

Code Coverage for Dotty

Quentin Jaquier

N° Sciper: 235825

June 2018

Code Coverage for Dotty

2

Table of Contents
Introduction .. 3

Code Coverage .. 3

Coverage metrics .. 3

Line coverage .. 3

Statement coverage .. 3

Other types of coverage.. 4

Implementation .. 4

Probe insertion.. 4

New phase in Dotty ... 5

Type of tree instrumentation .. 5

Probe implementation .. 8

Report generation ... 8

Branch coverage ... 9

Quality of the coverage ... 9

Boolean short-circuits ... 10

Function application ... 10

Optimization ... 10

Disposable instrumentation .. 11

Performance comparison with Scoverage .. 12

Others optimization .. 14

Testing ... 14

Conclusion ... 14

Future work ... 15

Thanks ... 15

References .. 16

Source code ... 16

Dotty Coverage tool .. 16

Dotty with coverage .. 16

Code Coverage for Dotty

3

Introduction
Code coverage is an important tool used to measure the quality of a test suite, it gives to the tester

some information on which part of the code is covered by the tests, with some statistics. It enables the

programmer to define priorities and to help him to improve the quality of his code. There is a lot of

coverage tools available for many languages, but currently none of them is implemented for Dotty.

Dotty can be seen as an experimental project that aims to simplify the internal of the compiler, having

some tools to help the programmer in this task is definitely something that could be useful. The goal of

this project is exactly to add code coverage support for Dotty. This work takes some code and inspiration

from others code coverage tools, mainly from Scoverage [1], a tool for Scala 2 often used by the

community, but implements a new version with some different ideas. There is a lot of different coverage

tools available that seems to define their own vision of code coverage, knowing what to expect from

such a tool is an important step in the design. This work will present one implementation of a code

coverage tool, discussing the different choices, describing the implementations and performances, and

proposing some optimization.

Code Coverage
In a general manner, obtaining coverage information for a program can be described as a general

procedure [2]. First, we need to identify the target entities in the program. These entities can be of

several types, depending on the purpose. Then, we will modify the program to add some probe in the

code that will capture the execution of the entities. This process is also referred as instrumentation in

this report. We can now execute this new version of the program to obtain a trace, and finally process

this trace to obtain the coverage information.

Coverage metrics
As we have seen before, the target entities can be of various types, the choice of what we decide to

instrument defines mainly the type of coverage that we will obtain, with different granularity and

overhead. When to instrument the code is also an important choice that has some impact on the result.

Instrumenting at the byte-code level provide low overhead but loses some information about the source

code compared to an earlier instrumentation. These multiple possibilities come with different purposes

and overheads. A coarse grain version will give a good overview of the coverage with low overhead

while a finer grain will give details information with much more overhead.

Line coverage
Line coverage will simply output for each line if it is executed or not. While simple, this version already

provides a good overview of the coverage for the code, and can be efficiently implemented at the byte-

code level. The disadvantage is obviously that it will give imprecise feedback if multiple actions are

written at the same line. This is not a problem on languages that usually define one action per line, but is

not well suited for a functional language like Scala, where it is not rare to see one-line code.

Statement coverage
Statement coverage is a finer grain that we can obtain for code coverage, it instruments single

statement at a time. The name of statement is a bit misleading, it does not follow a general definition

that we could find in a grammar definition, but every statement coverage tool seems to implement its

own version. This complexity comes from the fact that it makes no sense to instrument every single

entity that we generally consider as statement. For example, it is useless to instrument a block if we

Code Coverage for Dotty

4

already instrument all his content, this will lead to multiple instrumentation of the same part of the code

adding overhead and skewing the statistics. This work implements a variation of statement coverage

that will be described in detail later.

Other types of coverage
Other possible ways of implementing coverage is to consider instructions, branches, methods, objects ...

All these versions come with different purposes and overheads that a programmer may want.

Figure 1: example of code that shows the difference between coverage metrics

We can see the difference between metrics in the example in Figure 1. If our test includes the value true

and false for a and only true for b, the results will vary in function of the metric that we choose. The

different results can be found in Figure 2. For statement coverage, we consider each literal as individual

statement and the condition of the if as one statement, hence 50%. If this example only uses literal for

simplicity, every statement can be arbitrary, displaying more than 50% coverage can be misleading for

the user if he is not aware of the details of his tool.

Line Coverage Branch Coverage Statement Coverage

100% 75% 50%
Figure 2: result of different coverage metrics for code sample in Figure 1

Implementation

If the general idea is simple and can be easily understood, the implementation is not straightforward

and needs some effort in order to be implemented correctly. The complexity comes from the fact that

there is no clear definition of statement coverage, and that it is not always possible to insert probe

where we want, as the environment does not always allow it.

The next parts will describe in more details the procedure implemented for this work, the general idea

follows the one presented below. This first implementation may seem naive in some part, we will

discuss some optimization later in this report.

Probe insertion
This is probably the most complex step in the process as it will directly define the final result of the

coverage. First, we have to choose our coverage metric: my implementation implements a variation of

the statement coverage. The majority of the tools for code coverage give a good feedback to know what

percentage of the code was executed, but hardly ever a good way to identify why some part of the code

was not covered. The goal of this implementation is to be useful for the user in both ways. Short-

circuiting of Boolean is a good example to explain this idea that is not always supported in other tools.

Code Coverage for Dotty

5

Figure 3: output of the current implementation for Boolean short-circuit

Figure 3 shows the current output of the coverage, in this case, it is clear that complexFunction() should

not be shown as covered. The union of the two statements into one single covered statement is the kind

of misleading output that we want to avoid in our implementation.

New phase in Dotty
I choose to insert probe during the compilation, mapping back to the source code bytes-code

instrumentation would be too difficult and potentially lose some information that would be useful for

reaching this goal. Before starting to write the new compilation phase, we have to ask us two questions

that will influence our work.

Emplacement

In a general manner, it would make sense to implement this work as a plug-in, since we only want

coverage information in specific cases. At the beginning of the work, it was not possible to add plug-in to

Dotty, I therefore implemented it directly inside the compiler as a new phase that is executed only when

some compilation options are added.

The first question that arises when we implement a new compiler phase is to choose where to add it. In

the context of code coverage, the earlier is the better in order to not lose any information that we need

to give a useful feedback to the user. I choose to add it at the end of the front-end phase, just before the

phases dealing with TASTY tree pickling and unpickling. It is important to do it before phases that

perform some optimization like dead code elimination. For example, the transformation FirstTransform

is already removing some unreachable code from If tree with constant condition, this is typically some

code that we want to instrument before being removed by the different optimization of the compiler as

we want to show it as uncovered even if it is removed.

Macro or mini phase

One important difference between a macro and a mini phase is the order of traversal of the tree. The

former is a top-down approach while the latter is a bottom-up. Implementing our coverage would be

possible with both approaches, but a top-down version is more suitable in order to easily “stop” the

instrumentation, when we do not want a branch to be instrumented or when we want to instrument a

bigger part of the tree without having the sub-tree instrumented twice.

Type of tree instrumentation
To clearly understand what the tool instruments or not, we can look at how we process each tree of the

abstract syntax tree. We can separate the different trees into categories, each member being

instrumented more or less the same way.

Fully instrumented

The trees Ident, Literal, New, Super, This, are fully instrumented as they are. An exception is the Ident

wildcard that should not be instrumented as the compiler will not be able to assign a type to it. This is an

important choice as it means that there will be potentially a lot of probes inserted, instrumenting them

is clearly an arbitrary choice of this implementation. Despite the obvious cost of this choice, the

advantage is that we will have a better result of what the real statement coverage is. For example, if we

Code Coverage for Dotty

6

have an if statement without an else part, that have a huge computation with 99 literals, a branch

coverage metrics would output 50% coverage as the real statement percentage is closer to 99% if we

test only this branch. In addition, this choice will enable an easy identification of where a problem has

occurred.

Not instrumented

As opposed to the previous category, some of the trees and their branches should not be instrumented,

either because the syntax does not support the addition of probes (Import), the code will be in any case

removed during the compilation (Annotated) or because we know that there is nothing interesting to

instrument (Typedtree).

Recursively transformed

This is the default case, when we have a tree where only his content needs to be instrumented, we can

simply recursively continue the transformation. As default case, there is a lot of trees that enter in this

category, good examples are Block and Match as their content will necessarily be instrumented.

Partially instrumented

These are trees that we cannot instrument completely and cannot count only on the instrumentation of

their content. For example, CaseDef is special in the sense that we do not want to instrument the

pattern, but only the guard and the body, and we do not instrument the ID of PackageDef.

Select and Apply instrumentation

Select and Apply could enter in the category of partially instrumented, but the way we handle them is

particularly tricky and cannot be simply described as a binary choice.

Figure 4: sample code that have to be carefully instrumented

Figure 4 shows a pseudo code that illustrates the situation. In this case, we have an object A that have

one function f that takes three arguments, and one object B that have only one function that simply

throws an exception. During the execution of the last line, the program will first evaluate A, that can

have some side effect, then evaluate the arguments of the function to finally call the function f. Figure 5

shows a coverage output that correctly reflects this execution: it shows A, the two first arguments of the

function f as covered, but not the function f itself and the call to function complexFunction(). It is

interesting to have this kind of feedback since every single statement can generate their own side

effects, identifying where the problem comes from can be tricky if it gives incomplete feedback.

Figure 5: correct coverage output

In order to reflect this behaviour, it is not possible to instrument the whole apply, as the function f

would be included in this tree and not shown as uncovered. One solution is to use argument lifting, that

Code Coverage for Dotty

7

is used during Eta-expansion for example. We can however not use the exact same code; the arguments

should be lifted in a precise way in order to reflect the real behaviour.

Figure 6: example of lifting

The idea is to obtain the code of Figure 6 for the line of Figure 5, and to proceed to the instrumentation

of this new code, that will also restart recursively the same procedure for the second Apply (B.g(10)).

The last line can now be instrumented as it is and assigned the position of f to be able to display if the

function is really executed or not. The current order now reflects the expected execution order, all parts

that are executed before the origin or the exception will be shown as covered and not the one after,

including f. If the argument cannot produce side effects, we do not need to go through this procedure,

but we cannot lift only a part of the arguments (for example only the ones that can produce side effect),

since it will change the order of the real execution. In our example, if we decide to not lift the first

argument, it will not be shown as covered despite the fact that it is executed when the coverage

modification is not present.

When we have implemented this trick, we now have to make sure that the original order of the

operation is respected in all situations. This is currently not the case: in the case of Boolean short-circuit,

Figure 7 shows the current wrong transformation that can happen. In this case, the function f will show

as covered although it is not in a normal execution.

Figure 7: case where the lifting should not be applied

The solution to this problem is to not apply the lifting when we have Boolean operation.

Some additional details should be taken care of related to Select and Apply. The first example is a

constraint from the environment: New tree should be wrapped in a Select, in this situation, we cannot

apply our transformation and have to instrument the whole select as one. A second example is the fact

that Java classes cannot be used as value, we should therefore stop the recursive transformation and

instrument directly the node that uses this kind of module.

Code Coverage for Dotty

8

Figure 8: two different lifting that does not reflect the same execution

Figure 8 shows another example of pseudo code that is not correctly supported by the previously

described transformation. The lifting at the left is the current result of the process, while the one on the

right should be the correct one. The problem comes from the structure of the created tree that creates

nested Apply, a naive transformation will transform the code in a wrong way. The solution for this case

is to detect this situation and to lift all the arguments to produce the second version of the code.

These details are examples that show the difficulty of this work, one single solution is not always

possible, it often works for a general case but is not correct for all possible situations. They are often not

complex problems that need a lot of researches to understand and solve, but they are hard to find as

they happen in specific situations.

Probe implementation
Once we have identified where we have to add the probes, we have to decide how we want to

implement them. The idea is to assign an ID to all trees that we want to instrument. We can then

surround every tree with a block containing, before the statement to instrument, a call to an Invoker

function that we will add in the runtime library of Dotty. The naive version of this invoker will simply

write the ID to a file that we will call trace file. Optimization that can be done to this step will be

discussed later. In Figure 9, we can see an example of instrumentation of the statement print. The

invoked function of the Invoker will simply write the ID 4 in the trace file present in the path given as

second argument. In addition to this, the process will store some meta information about the tree that

is instrumented (position, line number, enclosing method, type of tree …) in order to be used later to

generate the report. We will call this file the statement data file.

Figure 9: example of instrumentation

Report generation
Once we have a list of statements with the ID’s of which one have been executed, it remains to display it

to the user in a friendly way. In this step, we could do some interesting analysis, visualization or statistic

with these data, choose different output formats, different output platforms ... The advantage at this

point is that we have structured data that can be adapted to support many other tools for code quality

Code Coverage for Dotty

9

inspection. For the sake of time, I simply used the report generator created by Scoverage [1], with some

minor adaptation in order to be compatible with my code. It originally creates a HTML report for

statement and branch coverage for Scala, the code can therefore be easily adapted to support Dotty.

Figure 10 shows an example of report that the implementation currently output.

Figure 10: example of report

Branch coverage
We have seen previously that sometimes coverage between two metrics is very different and can lead

to misleading information, having multiple metrics available can solve this problem. Branch coverage is

an important feature for code quality, it can detect a large part of the code that is not executed. Despite

the fact that branch coverage is in itself not sufficient to reach our goal, adding it in our implementation

comes nearly for free. Currently, we support the instrumentation of any kind of trees, we can therefore

instrument additional trees and mark them as branches in the statement data file. We can therefore add

a new category to the one described during the Type of tree instrumentation section.

The first tree that we instrument for this purpose is obviously the If tree. The current version of the code

instruments the then and else part directly as branches and continues the instrumentation recursively.

This may result in some statements that are instrumented twice, once for the statement coverage and

once for the branch coverage, but this is not a problem, as long as we make sure to not mix them during

the statistics for the report. There is no simple solution that would result in a single instrumentation of

such statement. We would want to try for example to instrument the first statement that follows an If

and mark it as branch, but this is in fact not correct for all cases. For example, in the case of nested If

statement it is not clear what is the first statement and at which If the statement marked as branch

refers to. Supporting this kind of problem would require extra work compared to the version that adds a

probe to the code.

The second kind of tree that we consider as branch is Try. We instrument the expression and the

finalizer of the tree if present. This simple addition is a powerful tool that we can add to the final report.

Quality of the coverage
The quality of the result of the coverage is hard to quantify, we cannot really compare two tools since it

depends on the purpose of the user. One way to estimate the quality is to show different features that

the coverage supports that are not always supported in other tools.

Code Coverage for Dotty

10

Boolean short-circuits
This is not necessarily the kind of feature that is mandatory for a coverage tool to support, but this is

definitely something that can be very useful in identifying some potential bug.

Figure 11: example of Boolean short-circuits supported by the implementation

Function application
As discussed in Select and Apply instrumentation, the correct covering of this kind of problem is rare.

Figure 12: difference between Scoverage (left) and my implementation (right)

Figure 12 shows the difference between Scoverage and my implementation. Scoverage is also detecting

that the call to complexFunction() is not made due to the fact that the call to B.g() is throwing an

exception, but is displaying the function f as covered. This may seem like a small difference, but the

reality is that the argument is evaluated before the function call, the function f is not executed and

should not be shown as covered.

Optimization
When using code coverage tools, we cannot avoid some extra execution time due to instrumentation.

When we made the choice of statement coverage, we knew that we would add far more probe into the

code than any other type coverage, we can therefore expect the extra execution time for our

implementation to be larger than the values generally advertised by other type of coverage.

The first place that is impacted by the instrumentation is the compilation time. This process adds an

extra phase to the compilation that will add some extra overhead. In order to reduce the overhead, the

current implementation uses the power of a top-down approach in order to stop the traversal of the

tree when we know that there is nothing to instrument in the subtree, for the different kinds of

TypeTree for example. If the compilation time is affected by this process, the impact is negligible

compared to the overhead that the coverage currently adds to the execution time.

To test the impact of the coverage on the execution time, we will use Scala Community Bench [3], that

uses Java Microbenchmark Harness (JMH) to perform some benchmarks. JMH is setup with 2 forks, 5

warm-up iterations and 10 iterations measured. The following values should be taken with care,

benchmarking is a hard task that has a lot of external parameters that can skew the results. In addition,

the following benchmarks are often thigh loop that are executed many times, this is typically the type of

code that suffers from coverage probe. The following results are still useful, mainly to compare the

difference between different implementations.

Code Coverage for Dotty

11

Benchmark No coverage
[ops/s]

Naive coverage
[ops/s]

Difference

BounceBenchmark 31900.357 17.83 1789

GCBenchBenchmark 10.259 0.006 1709

TracerBenchmark 1274.965 0.552 2309
Figure 13: benchmark results for the naive version

Figure 13 shows the result of three benchmarks, for each one the code is executed without coverage,

and with the naive version of the coverage tool. We can clearly see that, as it is, the tool is unusable due

to his huge impact.

Hopefully, there is multiple ways to optimize this process in order to improve the performances. The

next part will discuss some possible optimizations that can be applied to our implementation. Due to the

time constraints, only a small part is implemented, but it is already sufficient in order to make the tools

useable for testing purposes.

Disposable instrumentation
The first idea to reduce the impact comes from a technique called disposable instrumentation [2]. The

idea is that, despite that we support duplicates ID in our trace file, we are not interested in the exact

number of execution of a statement, we only need to know if a statement is executed once or more, or

not at all, for being able to give a coverage feedback to the user. An easy way to translate it to our

implementation is the addition of a set in the Invoker that will make sure that one thread will write an ID

only once to his trace file. This will not prevent all write of the same ID due to potential concurrent

execution, but this will already greatly reduce the number of I/O that is performed.

Figure 14: benchmark results for the optimized Invoker

Code Coverage for Dotty

12

Figure 14 shows the impact on the performance for the version with an optimized Invoker. The impact is

now more acceptable, but still has big influence for some benchmarks. We can see that there are two

kinds of results: one that has some acceptable overhead (less than 2 times), like SudokuBenchmark, and

others that have some more noticeable impact. When we look closer to the benchmark that performs

poorly, we can see that they all implement a thigh loop that contains a lot of instrumented statements.

Even though we do not perform an I/O for every iteration, the call to the Invoker function seems to still

have a huge impact.

Performance comparison with Scoverage
The original code for the Invoker comes from Scoverage, but it has been simplified to better fit our

purpose. The main difference is that the Scoverage version of the Invoker supports the same thread to

write to different folder. Since our implementation only writes the trace file to a single folder, we can

save some computation by only checking if a given ID is already present, and not if it is present in a given

folder.

Figure 15: performance comparison between Scoverage on Scala 2 and our implementation on Dotty

Figure 15 shows the current difference of impact compared to an execution without coverage between

the current version of Scoverage (1.5.1) with Scala 2 and our implementation with Dotty. Even though

we seem to instrument more statement than Scoverage, the performance is still better due to our

simplification of the Invoker. We can see that even the tools that seems to be well known to the

community also suffer when confronted to this kind of benchmarks. When we look at the Github of

Scoverage, they seem to be aware than the Invoker is the bottleneck in some situations, and some pull

request have tried to solve this problem, but the project does not seem to have moved since a few

years.

Code Coverage for Dotty

13

Figure 16: comparison between three versions of the coverage tool

In Figure 16, we can see the impact of the performance if we remove the write to the file from the

invoker, the remaining overhead is therefore only the call to the Invoker and the preparation of the

write that include the set management. The I/O obviously has a non-negligible impact, but we can still

conclude that the bottleneck is more in the set operations of the Invoker than during the I/O. The

Invoker part seems to be an unavoidable point to optimize the overhead.

One way to reduce the overhead is to rethink our whole definition of what we have defined in the Probe

insertion section. In Figure 16, we can see that if we do not instrument literals, we can reduce some of

the overhead. Removing the literals can be justified since they are constant that will never be the source

of problem, but we lose the power that we discussed previously. Instrumenting less is always possible,

but it will decrease the quality of the output. Another way to optimize the invoker would be to perform

this computation in a non-blocking way, by assigning one thread that would be responsible to perform

the set computation and the I/O to every thread that calls the invoker.

Disposable instrumentation is a particularly good optimization if we consider the 80/20 rules to be true

(80% of the execution times of a program comes from 20% of the code). There is no need to

continuously go through the probe’s overhead if only one traversal of the 20% of the code is enough.

This rule definitely applies for our benchmarks since they all perform heavy computation with only small

code. The final goal of disposable instrumentation is to completely remove the call to the invoker. It is

particularly interesting in our case since we have seen that the overhead comes principally from these

calls, even when we do not perform I/O. We can remove the probe at the application level or at the JVM

Code Coverage for Dotty

14

level [2]. The former uses some technique that dynamically updates the application, by using a

technique called hot-swapping [4]. This technique statically updates the code to enable a dynamic

swapping. Our implementation could use this technique to statically prepare the program during the

compilation, and support a dynamic swapping in order to remove the call to the Invoker. This is a smart

solution, but this technique is created to not need any support from the runtime. Since we have access

to it, we could remove the calls at the JVM level, by modifying at runtime the byte-code. This technique

could offer very good results, but requires very good knowledge of the implementation of the JVM.

Others optimization
A lot of work has been done in order to optimize the coverage of code. This part will briefly discuss some

potential optimization that can be done, it has not the purpose of describing in details how to

implement the different optimizations, but to give some ideas for where to start to continue this work.

An important part is to define precisely where probes are needed, to reduce the number of probes, and

therefore the number of calls to the invoker. An idea is to use some dataflow analysis in order to identify

domination relationship [5]. It can be applied in our code by regrouping in one main statement

instrumentation, multiple statements that are always executed if the main statement is also executed.

This is not a straightforward task since it would require some important graph analysis to identify these

kinds of nodes.

Another article cites that by using software tomography, we only need to instrument 2 % of the

branches and still have accurate information [6]. This technique can probably not be used as it is, and

the percentage that we need to instrument is probably much higher for statement coverage, but this

shows us that it is possible to reduce the number of statements instrumented to reduce the impact of

the coverage without reducing the quality of the coverage.

Testing
Adding tests is always a good idea in a project, especially when the whole surrounding and content of

the code is devoted to change. One way to test the code is to compile, run the code, and then check the

output of the statement data file and the trace file matches the expected values. The current version of

the code does not implement automated testing because the implementation will change soon to a

compiler plug-in. Still, during the implementation, I made sure to keep all the code samples that I wrote

to test the different situations that can happen in the code. These different code samples can be

provisory checked manually, and are ready to be used in an automated way if a plug-in eventually comes

up.

Conclusion
The goal is reached, we currently have a coverage tool that works on Dotty and have successfully

avoided some of the misleading output that we can find in other coverage tools. We have seen that this

version of statement coverage provides useful information for the user, but this seems to be achieved

with some non-negligible costs.

Discovering the Dotty project was really interesting and at the same time really challenging, as the

environment is complex and constantly evolves. Even if, at first glance, we might think that this work is

completely separated from the compiler, there is in fact a lot of interactions with the surrounding. A first

Code Coverage for Dotty

15

example is some positions that were not correctly set during the other phases of the compilation,

resulting in erroneous results when we looked at the report. To solve this problem, I had to go through

the different transformations that happen to the tree to try to identify where the position was

incorrectly set. A second example is the lifting of function arguments were part of the logic is reused

from Eta-expansion. This work has taught me how to face an important code base, competence that will

definitely be useful in my future.

Future work
Despite the fact that the current implementation works and produces a result with a decent amount of

overhead, it is far from being ready. The code could be adapted to a separated compiler plug-in,

thoroughly tested, debugged to support large code instrumentation, optimized, tested on other larger

code like Dotty itself and much more other amelioration. This subject is in fact the door to a lot of

interesting work that touch a lot of different domains. This report has introduced some challenge that

remains to be solved, with some clue where to start to solve them.

Thanks
Professor Martin Odersky for supervising my project.

Guillaume Martres for his help and advices during the whole project.

Olivier Blanvillain for his advices for the different benchmarks used for this project.

Code Coverage for Dotty

16

References

[1] "SCoverage, code coverage tool for scala," [Online]. Available: http://www.scoverage.org/.

[2] Chilakamarri, Kalyan-Ram & Elbaum, S. (2004). Reducing coverage collection overhead with

disposable instrumentation. 233- 244. 10.1109/ISSRE.2004.32..

[3] "Github repository : Scala Community Bench," [Online]. Available:

https://github.com/OlivierBlanvillain/scala-community-bench.

[4] A. Orso, A. Rao and M. J. Harrold, "A technique for dynamic updating of Java software,"

International Conference on Software Maintenance, 2002. Proceedings., 2002, pp. 649-658.

[5] H. Agrawal. Dominators, Super Blocks, and Program Coverage. In Proceedings of the 21st ACM

SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '94).

[6] J. Bowring, A. Orso, and M. Harrold. Monitoring Deployed Software Using Software Tomography. In

Workshop on Program analysis for software tools and engineering.

Source code

Dotty Coverage tool
https://github.com/Qjaquier/dotty-coverage-tools

Example of project that uses the version of the Dotty compiler that implements the coverage phase. It

contains all the infrastructure to compile and run instrumented code, and generate a coverage report

for it.

Dotty with coverage
https://github.com/Qjaquier/dotty/tree/coverage

Fork of dotty, implementing the coverage phase.

https://github.com/Qjaquier/dotty-coverage-tools
https://github.com/Qjaquier/dotty/tree/coverage

