
Interactive Development using the Dotty Compiler
(Tool Paper)
Guillaume Martres
EPFL, Switzerland

guillaume.martres@epfl.ch

Abstract
A programming language is only as good at its tooling. Tra-
ditionally, tooling has always been an after-thought of lan-
guage design since developing good tools take significant
development efforts. Dotty is an experimental compiler for
what will one day be called Scala 3, and Scala already has
established and functional tooling. For Dotty to be seen as a
viable alternative to Scala 2, it needs to deliver a developer
experience at least as good. In particular, good support for
Integrated Development Environments (IDEs) is crucial. In
this paper we report our progress on providing IDE support
for Dotty.

CCS Concepts • Software and its engineering → In-
tegrated and visual development environments; Incre-
mental compilers;

Keywords Scala, Dotty, Interactive Development Environ-
ment, Language Server Protocol
ACM Reference Format:
Guillaume Martres. 2017. Interactive Development using the Dotty
Compiler (Tool Paper). In Proceedings of 8th ACM SIGPLAN Inter-
national Scala Symposium (SCALA’17). ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3136000.3136012

1 Introduction
Three projects represent the state of the art in Scala IDE
support:

• The Scala plugin for IntelliJ IDEA1, which contains
its own implementation of a typechecker for Scala
tied to IDEA’s internal data structures. The custom
typechecker means that the plugin does not always

1https://github.com/JetBrains/intellij-scala

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SCALA’17, October 22–23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5529-2/17/10. . . $15.00
https://doi.org/10.1145/3136000.3136012

reflect the behavior of the real compiler, but allows the
IDE to provide powerful refactoring features based on
its understanding of the code.

• The Scala IDE plugin for Eclipse2 which communicates
with the compiler to get semantic information.

• ENSIME3, which provides both a server that communi-
cates with the compiler and plugins for several editors
(Emacs, Vim, Sublime, ...) that communicate with the
server using a custom protocol.

Unfortunately, none of these solutions can easily be inte-
grated with Dotty: both the Scala IDE and ENSIME are too
tied to the internals of the Scala 2 compiler, and adapting the
IDEA plugin would mean reimplementing the semantics of
the Dotty typechecker and maintaing them as Dotty contin-
ues to evolve. This is why we developed our own solution
for IDE support from scratch, starting from the following
requirements:

• It should be based on primitives that can be reused to
develop other interactive tools, like REPLs.

• It should not be tied to a specific editor.
• It should be as easy to install and use as possible.

This lead us to develop the following components:
• A set of APIs in the compiler designed for interactive
usage, described in Section 2.

• The Dotty Language Server, an implementation of the
Language Server Protocol4, described in Section 3.

• A plugin for the Visual Studio Code IDE5 to launch
the Dotty Language Server, as well as a plugin for the
sbt build tool6 to configure and run an IDE, described
in Section 4.

2 Using Dotty as an Interactive Compiler
Until now, Dotty has been mainly used as a batch com-
piler: given a set of files as input it will attempt to compile
them and then exit. However, it has been designed from the
start for more interactive use-cases where the same com-
piler instance is reused for multiple compilation attempts.
Each compilation attempt is called a run and symbols de-
fined in previous runs are accessible in the current run. In

2http://scala-ide.org
3http://ensime.org
4https://github.com/Microsoft/language-server-protocol
5https://code.visualstudio.com
6http://www.scala-sbt.org

41

https://doi.org/10.1145/3136000.3136012
https://doi.org/10.1145/3136000.3136012

SCALA’17, October 22–23, 2017, Vancouver, Canada Guillaume Martres

a REPL, a new run would be created everytime the user
presses “Enter”; in an IDE, a new run could be created
for every keystroke. To expose this functionality, we have
developed a set of high-level APIs under the namespace
dotty.tools.dotc.interactive.

Besides handling the life-cycle of an interactive compiler,
the interactive APIs provide convenience methods for imple-
menting typical IDE features such as auto-completion and
“go to definition”, these methods work by traversing typed
Abstract Syntax Trees or typed trees for short.

2.1 Querying the Compiler Through Typed Trees
During batch compilation, the source code is parsed to pro-
duce untyped trees which are then desugared and type-
checked. The typed trees then go through a series of type-
preserving transformations that progressively simplifies
them until they can be easily translated to a backend-specific
format such as JVM bytecode. Interactive compilation reuses
the same pipeline but stops the compiler after typechecking.
This is enough to report most of the compiler errors and
warnings7 with a minimum amount of latency, but more
importantly, this is exactly what we need to implement in-
teractive features: each tree node has a type containing the
required semantic information and since the trees have not
been simplified yet, it is easy to translate back and forth
between a source code position and the corresponding tree
node(s).

2.2 TASTY: a Serialization Format for Typed Trees
Using typed trees as the universal interface to ask questions
about code opened in the IDE seems convenient since type-
checking the user code is required to report errors, but what
about files which are not currently open in the IDE? Type-
checking the whole project in the background and keeping
the corresponding trees in memory does not scale to large
projects, and building an index would mean giving up on
typed trees as the sole source of truth about the semantics
of the code. Instead, we take advantage of another feature
of the compiler: TASTY [Odersky et al. 2016] is a serializa-
tion format for typed trees. Everytime a class is compiled
by Dotty, the trees after typechecking are not discarded but
serialized and stored in a dedicated section of the emitted
classfile. The original motivation behind TASTY is the desire
to solve the binary compatibility problem [Odersky 2014]
by providing an interchange format more stable than JVM
bytecode and more resilient to compiler changes than source
code, but TASTY is also exactly what we need to provide
interactive features across one or more projects: instead of
re-typechecking everything, we can simply deserialize the
stored trees and treat them exactly like source-derived typed
trees. In practice, our work on the IDE required changing

7The IDE should also run the full compiler in the background to catch errors
occuring later in the pipeline. Our implementation does not yet handle that.

TASTY to carefully record the positions of all trees, some-
thing which wasn’t necessary for its original purpose but
is critical for interactive features such as symbol renaming
to work correctly. From the point of view of a user of the
interactive API such as the IDE, the use of TASTY is transpar-
ent: the same methods are used to retrieve and query trees
whether they come from source code or from TASTY.

3 The Language Server Protocol
3.1 The IDE Portability Problem
While the interactive APIs described in the previous section
ease the work needed to implement an IDE, they do not
solve the main issue in IDE-compiler integration: tradition-
ally, gettingm IDEs to support n programming languages
has required the development of m × n IDE plugins, each
taking significant development effort. This has been dubbed
the IDE portability problem [Keidel et al. 2016]. Microsoft’s
Language Server Protocol (LSP) is a recent attempt at solving
this problem: it defines a protocol for an IDE to communicate
with a language server.

Language servers implement the language-specific logic
necessary to provide IDE features such as auto-completion
and go to definition. We only need to develop m IDE plu-
gins to support the LSP and n language server, for a total
development effort ofm + n implementation artifacts8. This
also results in a clear separation of work: IDE plugin devel-
opers do not need to understand language implementation
details and language developers can expose their language
to the outside world without knowing anything about IDE
internals.

3.2 Basics of the LSP
The LSP is a JSON-RPC based protocol that an IDE and a
language server can use to communicate via messages which
can either be notifications, requests or responses. The IDE no-
tifies the language server about user actions like file opening
and editing. Based on this, the language server can main-
tain an up-to-date internal representation of the user code
and notify the IDE about compilation errors and warnings.
The IDE may also send requests like “go to the definition
of the symbol at point” or “find all references to the symbol
at point” usually triggered by user actions. The protocol is
fully asynchronous and multiple requests can be sent before
a single response has arrived, requests can also be cancelled.

3.3 Limitations
The LSP is not mature yet:

• Many IDEs do not have LSP implementations yet, see
http://langserver.org for a list of implementations.

8In practice, a small language-specific plugin is still needed to let the IDE
know which file types should be handle by which language server, and
how to start the language server. In Section 4 we briefly describe such an
extension that we developed for Visual Studio Code.

42

http://langserver.org

Interactive Development using the Dotty Compiler (Tool Paper) SCALA’17, October 22–23, 2017, Vancouver, Canada

• The protocol only defines one kind of refactoring: re-
naming symbols

• Some of its supported queries are not precise enough:
when renaming a definition in an object-oriented lan-
guage, should overriden definitions be renamed too?
Currently, the protocol offers no way of signaling this
information.

3.4 Implementing a Language Server for Dotty
The Dotty Language Server (DLS) is based on the Eclipse
LSP4J library9 which provides a simple type-safe API that
takes care of the low-level details like marshalling and keep-
ing track of the correspondence between requests and re-
sponses. When initialized, the DLS parses the configuration
file .dotty-ide.json at the root of the project that should
have been produced by the build tool (as described in Sec-
tion 4), based on this it creates a compiler instance for each
sub-project (different sub-projects can have different depen-
dencies and use different compiler flags, so cannot be handled
by the same compiler instance). The implementation of the
protocol messages is rather straight-forward since most of
the implementation complexity lies in the compiler itself and
in the APIs from Section 2. As an example, the following code
implements the response to a query asking for the source
code position of the definition corresponding to the symbol
at a given position, which is exactly the information needed
to implement “go to definition”:

override def definition(params: TextDocumentPositionParams) = // 1.

computeAsync { cancelToken => // 2. // 3.

val uri = new URI(params.getTextDocument.getUri)

val driver = driverFor(uri) // 4.

implicit val ctx = driver.currentCtx // 5.

val pos = sourcePosition(driver, uri, params.getPosition) // 6.

val uriTrees = driver.openedTrees(uri) // 7.

val sym = Interactive.enclosingSourceSymbol(uriTrees, pos) // 8.

val classTree =

SourceTree.fromSymbol(sym.topLevelClass.asClass).toList // 9.

val defTree = Interactive.definition(classTree, sym) // 10.

defTree.map(d => location(d.namePos)).asJava // 11.

}

Let us go over this example in details to get a better un-
derstanding of the whole system:

1. LSP4J insulates us from the message-passing details,
instead we only need to override a few methods like
definition.

2. computeAsync creates a cancellable closure that will
be scheduled by LSP4J.

3. cancelToken is a callback provided by LSP4J used to
interrupt and cancel the current closure if the corre-
sponding request has been cancelled by the IDE. Our
implementation currently never calls cancelToken

9https://github.com/eclipse/lsp4j

because we haven’t added safe points for interrup-
tion inside the compiler. This means that the language
server may take more time than necessary to answer
requests (since it could be busy answering old can-
celled requests) but since responses are asynchronous
this should never block the UI of the IDE.

4. Files are identified by URIs, given such an URI we can
retrieve the corresponding compiler instance created
during the initialization of the DLS.

5. A compiler instance has a Context representing its in-
ternal state, we make the current one available implic-
itly since it will be needed for the semantic operations
done below.

6. The current position in the source is translated from
its LSP4J representation to its Dotty compiler repre-
sentation.

7. All typed trees found in the current file are retrieved.
8. The Interactive object defines a set of high-level

methods to retrieve information from trees, it is part
of the APIs we described in Section 2. It is used here
to find the symbol sym corresponding to the current
position.

9. The tree of the class where sym is defined is then re-
trieved. If this class is in a file that is not opened in the
IDE, the tree will come from TASTY without the DLS
having to handle it specifically.

10. The tree of the class is traversed to find the tree node
where sym is defined.

11. Finally, the position of the definition tree node is re-
turned after being translated to its LSP4J representa-
tion.

4 Tying Everything Together: Build Tool
and IDE Integration

No one likes following a complex set of instructions to setup
their tools, therefore we strived to make the Dotty IDE inte-
gration as easy to install as possible, we ended up reducing
the instructions to two steps:

1. Install Visual Studio Code.
2. In your project, run: sbt launchIDE.
Compiling Dotty code with sbt requires using the

sbt-dotty plugin. By adding IDE-specific commands to this
plugin, we made it possible for users to use the IDE support
without having to install and configure another plugin. The
sbt launchIDE command does the following:

1. The sbt build is analyzed to find projects that compile
with Dotty (the build might contain projects which
only compile with Scala 2, those will be ignored).

2. All the Dotty projects are compiled, this is important
since the IDE relies on the presence of TASTY which
is part of the compiler output.

3. A .dotty-ide-artifact file is generated containing
the name of the artifact to fetch and run the DLS.

43

SCALA’17, October 22–23, 2017, Vancouver, Canada Guillaume Martres

4. A .dotty-ide.json file is generated containing
enough information for the DLS to start a compiler
instance for each project and to match each file opened
in the IDE with the corresponding compiler instance.

5. The Visual Studio Code extension for the DLS is in-
stalled if it’s not present

6. Visual Studio Code is started.
At this point, the Visual Studio Code extension should

take over. It only has one job: read .dotty-ide-artifact
and use that to fetch and launch the DLS. The fetching part is
not trivial since the DLS has dependencies on other projects
that also need to be fetched, the extension delegates this to
the artifact fetching tool Coursier 10.

4.1 Support for Other IDEs
sbt launchIDE is currently hard-coded to run Visual Studio
Code because it features the most complete implementation
of the LSP, but we are also interested in supporting other
editors. The effort required to do so is minimal: our Emacs
extension 11 is only 20 lines of code, it is however not recom-
mended for users currently because the Emacs LSP support
is not yet mature.

4.2 Support for Other Build Tools
sbt is the only build tool that can be used to build Dotty
projects currently, but others will probably follow. Making
them work with the Dotty IDE support should be easy: they
only need to generate a .dotty-ide-artifact (used by the
IDE extension to start the DLS) and a .dotty-ide.json
(used by the DLS to start compiler instances).

5 Future Work
Our implementation is now usable but work remains to be
done to provide a good developer experience:

• Features The most important missing feature cur-
rently is documentation look up, which we may imple-
ment by storing the API documentation text in TASTY.
We are also interested in supporting case-splitting and
other features allowing for interactive type-driven edit-
ing as popularized by dependently-typed languages
such as Idris [Brady 2017]

• Optimizations Our implementation is suboptimal in
many way: it loads too many classes in memory, it
cannot interrupt cancelled requests and it does not

10https://github.com/coursier/coursier
11https://github.com/smarter/emacs-lsp-dotty

do targeted typechecking (meaning that every key-
stroke in a file ends up forcing the recompilation of
the whole file). These improvements won’t be trivial
to implement but should fit in our existing design.

• Build tool integration The DLS assumes that all
closed source files in the project have a correspond-
ing up-to-date classfile on the classpath, but this is
not enforced. If the DLS ran its own instance of sbt, it
could continuously do incremental compilations of the
whole project in the background, but communicating
with an sbt instance is not easy currently. We hope to
take advantage of the ongoing work on adding a server
mode to sbt [Yokota 2016] allowing communication
through a specified protocol.

• Testing So far, we have relied on manual testing but
real tests will be necessary to avoid regressions, we
plan to repurpose some of the testing infrastructure
and tests from the Scala 2 compiler.

6 Conclusion
By developing a fully functional IDE experience for Dotty,
we have demonstrated the suitability of the compiler design
for interactive tooling. The total development effort was
reasonable (the complete set of components took a couple
of man-months to implement), and thanks to the use of the
Language Server Protocol, the result is not tied to a single
IDE.

Having working IDE support early in the development of
the compiler means that it can drive the compiler evolution:
it has already influenced the set of information stored in the
TASTY serialization format, but it also offers the opportunity
to design language features and the way developers may
interact with them hand-in-hand.

References
Edwin Brady. 2017. Type-driven development with Idris. Manning Publica-

tions Co, Shelter Island, NY.
Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. 2016. The IDE portability

problem and its solution in Monto. In Proceedings of the 2016 ACM SIG-
PLAN International Conference on Software Language Engineering. ACM,
152–162.

Martin Odersky. 2014. The Binary Compatibility problem. https://www.
slideshare.net/Odersky/scalax. (2014).

Martin Odersky, Eugene Burmako, and Dmytro Petrashko. 2016. A TASTY
Alternative. Technical Report. https://infoscience.epfl.ch/record/226194

Eugene Yokota. 2016. sbt server reboot. http://eed3si9n.com/
sbt-server-reboot. (March 2016).

44

https://github.com/smarter/emacs-lsp-dotty
https://www.slideshare.net/Odersky/scalax
https://www.slideshare.net/Odersky/scalax
https://infoscience.epfl.ch/record/226194
http://eed3si9n.com/sbt-server-reboot
http://eed3si9n.com/sbt-server-reboot

	Abstract
	1 Introduction
	2 Using Dotty as an Interactive Compiler
	2.1 Querying the Compiler Through Typed Trees
	2.2 TASTY: a Serialization Format for Typed Trees

	3 The Language Server Protocol
	3.1 The IDE Portability Problem
	3.2 Basics of the LSP
	3.3 Limitations
	3.4 Implementing a Language Server for Dotty

	4 Tying Everything Together: Build Tool and IDE Integration
	4.1 Support for Other IDEs
	4.2 Support for Other Build Tools

	5 Future Work
	6 Conclusion
	References

