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Abstract
Classes in Scala are not a free abstraction: on the JVM, every class instance must be
a reference to a heap-allocated object, this incurs both CPU and memory overhead.
Value classes are a subset of classes which follow a list of restrictions that allow the
Scala compiler to reduce this overhead. This is accomplished by having two runtime
representations for values: an ”unboxed” one and a ”boxed” one, the latter being only
used when necessary. In this report, we explain in details our implementation of value
classes in Dotty, an experimental compiler for Scala. We will also mention possible future
extensions to the value class mechanism and how they could be implemented.

1 Primitive classes
The ability to create value classes was introduced in Scala 2.10. Before that, only nine
primitive value classes existed: Unit, Bool, Byte, Char, Short, Int, Long, Float and
Double. Since user-defined value classes share many similarities with primitive classes,
it is useful to study their design.
Two kinds of values exist on the JVM: nullable references to heap-allocated objects and
the following primitive types: boolean, byte, char, short, int, long, float and double.
This is done for performance reasons: if the JVM used objects instead of primitives, it
would significantly increase its allocation rate, memory usage (because every object has
a header) and number of pointer indirections 1.
In Scala, unlike Java, primitives are classes, this simplifies the language and makes
it more uniform because users do not have to worry about the distinction between
JVM primitives and objects most of the time 2. This is made possible by having two
different runtime representation for a primitive value: when possible we represent it as
a JVM primitive, but when the semantics of the JVM require us to provide an object
we wrap the primitive in an immutable object containing a single field. We call these
two representations unboxed and boxed respectively.
The following example illustrates the need for boxing:

val x: Int = 42
val y: AnyVal = x
def identity[T](x: T): T = x
val z: Int = identity(42)

On line 2, x needs to be boxed because the expected type of the expression is AnyVal
and primitives on the JVM do not have a common supertype. On line 4, 42 needs to be
boxed because generic types are not support by the JVM and need to be erased to their

1With a different garbage collection design, other approaches may have been possible, like tagged
primitives

2Since primitives are not references, null is not a valid value and there is no way to do reference equality
checks on them: they are identityless. This is enforced by making it impossible to call eq or ne on
primitives.

2



upper bound. Note that values are only boxed when absolutely necessary, for example
on line 4 the result of the identity method is unboxed so that z can be a primitive
value:

val x: Int = 42
val y: Any = scala.Int.box(x)
def identity[T](x: T): T = x
val z: Int = scala.Int.unbox(identity(scala.Int.box(42)))

2 User-defined value classes
Scala 2.10 introduced a way for users to create their own value classes [3]. User-defined
value classes need to explicitly extend AnyVal and to follow some restrictions, for exam-
ple:

class Meter(val underlying: Double) extends AnyVal

Like primitive classes, this class has two representation: an unboxed representation,
Double, and a boxed representation, Meter. Users can write code using the boxed
representation and when possible, the value class transformation will instead use the
unboxed representation at runtime.

2.1 Restrictions
The value class transformation is not fully general, it can only be applied to a class V
if it follows a series of restrictions, most of these restrictions stem from the fact that at
any point in the program we may need to box a value class or to unbox it and these
operations should not have any side-effect.

V has exactly one parameter which is a val

This parameter is called the underlying value of V. It must be a val so that the class
contains a getter to convert an instance of V to its unboxed representation.

V must be ephemeral

The notion of ephemerality was introduced in SIP-15 [3]. A class or trait V is ephemeral
if:

• V does not declare any field (other than its val parameter).

• V does not contain any object definition.

• V does not have any initialization statement.
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V may not have secondary constructors

This restriction is not fundamental: we could allow secondary constructors without side-
effects but we choose not to do so as that would complicate the value class transformation
and users can simply rewrite their code as follow:

class Position(val underlying: Long) extends AnyVal {
def this(posX: Int, posY: Int) =
this((posX.toLong << 32) + posY.toLong)

}
object Test {
def test = new Position(10, 20)

}

becomes:

class Position(val underlying: Long) extends AnyVal
object Position {
def apply(posX: Int, posY: Int) =
new Position((posX.toLong << 32) + posY.toLong)

}

object Test {
def test = Position(10, 20)

}

V must not define concrete equals and hashCode methods

This restriction is explained in Section 3.3 and a proposal for lifting it is described in
Section 4.2.

V must be either a toplevel class or a member of a statically accessible object

If V is not statically accessible, then its constructor isn’t either and that means that we
cannot box it, consider the following example:

class Outer {
class Meter(val underlying: Int) extends AnyVal

}
object Test {
def getMeter: Outer#Meter = {
val o = new Outer
new o.Meter(42)

}
def test = {
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val m: Outer#Meter = getMeter
val a: Any = m

}
}

Outer#Meter will be erased to Int, so m in test will have type Int, but m is then stored
in a field of type Any: this requires boxing m into a Outer#Meter, but this is impossible
without an instance of Outer.

V must be final

This is needed so that when we unbox a value class then box it back, we always get an
instance of the same class, if V was not final then boxing would be ambiguous: which sub-
class constructor should we use? Note that every class that extends AnyVal is implicitly
final, it is not necessary to specify it.

V may only extend universal traits

Traits in Scala extend AnyRef by default, so value classes cannot extend them. Traits
which explicitly extend Any are called universal, they do not extend AnyRef and value
classes can extend them. Like value classes and for the same reasons, universal traits
need to be ephemeral.

3 Implementation details
3.1 Compiler phases in Dotty
Dotty is split into phases, these phases can transform nodes of the AST (parsed from
source files) and they can also transform symbols (inferred from the AST and from
classfiles). Dotty is a very modular compiler: as of June 2015, it contains over forty
phases. This modularity is possible thanks to the concept of mini-phases. Traditionally,
each compiler phase needs to traverse the full AST, but in Dotty phases can be grouped
together such that the AST is only traversed once for the full group. As Figure 1 shows,
there are only 12 groups of phases in Dotty. Furthermore, note that the phases specific
to value classes were inserted into existing groups: they did not require more traversals
of the AST. Thus, we were able to make the value class transform mostly self-contained
and split into simple pieces without sacrificing performances.

3.2 The value class transformation, step by step
In this section we will describe how each phase of the value class transformation works.
We will use the following class as our running example:

class Meter(val underlying: Double) extends AnyVal {
def plus(other: Meter): Meter =
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Figure 1: The compiler phases. Each rectangle corresponds to a group of phases. Phases
highlighted in red are specific to value classes. Phases highlighted in yellow
had to be modified to support value classes.

new Meter(this.underlying + other.underlying)
}

3.3 SyntheticMethods
This phase does not appear in Figure 1 because it is actually part of PostTyper for
performance reasons, but we can reason about it separately from the rest of PostTyper
anyway. Its original purpose is the addition of the following methods (unless explicitly
overridden) in case classes:

def equals(other: Any): Boolean
def hashCode(): Int
def canEqual(other: Any): Boolean
def toString(): String

To be able to optimize == on value classes we need to override equals and hashCode, so
it seems natural to make SyntheticMethods responsible for this. Our implementation
of these methods must allow us to perform the following peephole optimization (see
Section 3.7 for details) for a value class V:

new V(u1) == new V(u2)
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should be rewritten to:

u1 == u2

To figure out how to achieve this, let us first take a look at the specification of == [1,
Section 12.1]:

final def == (that: Any): Boolean =
if (null eq this) null eq that else this equals that

This means that new V(u1) == new V(u2) will behave like (new V(u1)).equals(new
V(u2)), so we just need to define equals so that instances of value classes are equal if
and only if their underlying value is equal:

def equals(that: Any) = that match {
case that: V => this.underlying == that.underlying
case _ => false

}

This also requires us to define equals in a way that will satisfy the requirement that
x == y implies x.hashCode == y.hashCode while still being useful for hashing:

def hashCode: Int = this.underlying.hashCode

Note that this is different from the default implementations of equals and hashCode in
case classes with one element:

def equals(that: Any) =
(this eq that) || {
that match {
case that: V => this.underlying == that.underlying
case _ => false

}
}

def hashCode: Int = {
var acc: Int = 0xcafebabe
acc = Statics.this.mix(acc, this.underlying)
Statics.this.finalizeHash(acc, 1)

}

equals in case classes has an additional check for referential equality which does not
make sense for value classes. hashCode is more complicated because it uses the same
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hashing technique that is used for case classes with several fields. In the future we may
decide to use the same hashCode implementation for both case classes of one element
and value classes, but currently, if a case class is also a value class, SyntheticMethods
will generate the same equals and hashCode methods as if it was a non-case value class.

3.4 ExtensionMethods
The methods defined in a value class V can only be called on an instance of V. Our first
step in making it possible to avoid allocation is to make it possible to call these methods
statically. For every method m defined in the body of V:

1. We create a new method m$extension whose first parameter list is
$this: V and whose remaining parameter lists are the parameter lists of m. The
body of m$extension is a copy of the body of m where every implicit and explicit
reference to this has been replaced by $this. This new method is called an
extension method.

2. We replace the body of m by a forwarder to the corresponding extension method.

For example, given a method like plus in Meter:

def plus(other: Meter): Meter =
new Meter(this.underlying + other.underlying)

We add the following definition to the companion object Meter:

def plus$extension($this: Meter)(other: Meter): Meter =
new Meter($this.underlying + other.underlying)

And we replace plus in the class Meter by a forwarder:

def plus(other: Meter): Meter =
Meter.plus$extension(this)(other)

3.4.1 Handling of overloaded methods

When two overloaded methods m in a value class V exist, instead of creating two over-
loaded extension methods m$extension, we create m$extension1 and m$extension2.
We do not maintain an explicit mapping between each overloaded method and the
corresponding extension method. Instead, given a symbol for an instance method m,
ExtensionMethods#extensionMethod will find all extension methods whose name start
with m$extension and return the only one whose signature agrees with the signature
of m. This pattern is used because overloaded resolution is a complex operation that
should ideally only be necessary during the initial typer phase of the compiler to avoid
surprising behavior.
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3.4.2 Phase placement

This phase should be placed after every phase that may add methods to a value class
(like SyntheticMethods), otherwise these methods won’t get a corresponding extension
method and calling them will require boxing. It should also preferably be before phases
which may significantly increase the size of methods like PatternMatcher since we need
to traverse and transform the body of every value class method to generate the extension
methods.

3.5 Erasure
The purpose of Erasure is to translate Scala types to something representable on the
JVM. This is a rather complex operation because the Scala type system contains concepts
(like the unification of primitive types and reference types, or generic arrays) which are
not easily expressible on the JVM. Most of this complexity is contained in Erasure#Typer
which is a subclass of Typer, the class used to type trees in the frontend. Extending
Typer allows us to reuse the following features in erasure:

Expected type When typing a tree node, it is useful to know its expected type. For
example when typing val x: Foo = if (cond) a else b the expected type of a
is Foo. In Erasure, when the computed type of a node is not a subtype of its
expected type, we need to perform type adaptation which will be explained in the
next section.

Type propagation Once a node has been typed, its type should be propagated upward
in the tree to keep things consistent. For example in the tree if (cond) a else b
the computed type is the least-upper-bound of the types of the nodes a and b.

Before describing how Erasure works for value classes we will explain how it works for
primitives. Both cases deal with similar problems (primitives and value classes both have
an unboxed and a boxed representation on the JVM) but erasing primitives is simpler.

3.5.1 Primitive erasure

We will use the primitive class Int for all of our examples but every primitive (except
Unit, which we won’t describe) is erased in the same way.

val x: Int = 42
val y: Any = x
def identity[T](x: T): T = x
val z: Int = identity(42)

Conceptually, we start by just erasing the types:

• The primitive class Int is erased to the JVM primitive type int 3.

3In practice, erased trees still contain the class type Int but the logic in Erasure treats this type as if
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• Any, which is a superclass of every Scala class is erased to Object, which is a
superclass of every JVM class.

• Since the JVM does not support generic methods, the type parameter T of identity
has to be erased to its upper bound Any ([T] is equivalent to [T <: Any]) which
is subsequently erased to Object.

The result is:

val x: int = 42
val y: Object = x
def identity(x: Object): Object = x
val z: int = identity(42)

At this point, our code no longer typechecks: on line 2 for example, the computed type
of x is int but its expected type is Object, we need to perform type adaptation. The
type adaptation rules for primitives are fairly simple, using int as an example:

• e becomes scala.Int.box(e) if e has type int and its expected type is not int

• e becomes scala.Int.unbox(e) if the expected type of e is int but its actual type
is not int

After applying these rules, our tree typechecks again:

val x: int = 42
val y: Object = scala.Int.box(x)
def identity(x: Object): Object = x
val z: int = scala.Int.unbox(identity(scala.Int.box(42)))

3.5.2 Value Class erasure

We will start by considering the following simple example:

val m: Meter = new Meter(3)

We would like to erase Meter to its erased underlying type double, so let’s try replacing
Meter by double:

val m: double = new Meter(3)

As with primitives, we need to use type adaptation to make this typecheck. For a value
class V whose single field is called underlying we can simply adapt e to e.underlying
when the type of e is V and the expected type is double:

it was a primitive type. In this report, we write int in Scala code to mean ”Int as it is treated in
Erasure and afterwards”, this is similar to the meaning of int in [7].
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val m: double = new Meter(3).underlying

So far this works, but what if we add the following line:

val a: Any = m

Before Erasure this is valid because Meter is a subtype of Any. But after erasing the
types, we get:

val a: Object = m

At this point we need a type adaptation rule to box m into a Meter, but we cannot write
this rule: the type of m is double and its expected type is Object, so the rule for primitive
boxing from the previous section applies and we get:

val a: Object = scala.Double.box(m)

This is not what we want: a boxed Double and a boxed Meter are different even though
their unboxed representations are the same, the problem is that we lost information
when we erased Meter to double.
To resolve this we need to use an intermediate representation whose only purpose is
to drive type adaptation: for a value class V whose underlying type is U this type is
called ErasedValueType(V, U). It is outside the normal hierarchy of Scala types: it is
a subtype of no other type and is a supertype only of Nothing. Instead of replacing V
by U we will replace it by ErasedValueType(V, U):

val m: ErasedValueType(Meter, double) = new Meter(3)
val a: Object = m

Before presenting the type adaptation rules to make this tree typecheck we need to
discuss two special methods that exist for every value class:

object V {
def u2evt$(x0: U): ErasedValueType(V, U)
def evt2u$(x0: ErasedValueType(V, U)): U

}

For every value class V we create symbols for these methods in ExtensionMethods but
we do not create any corresponding tree: the only purpose of these methods is to cast
values to and from ErasedValueType. These methods may seem unnecessary: in Scala
we can cast any value to any type using asInstanceOf. But this is not the case after
Erasure: only values whose type is a reference type can be casted using asInstanceOf.
We can now introduce the correct type adaptation rules for value classes:

• e is adapted to V.u2evt$(e.underlying) if e has type V and the expected type is
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ErasedValueType(V, U)

• e is adapted to new V(V.evt2u$(e)) if the type of e is ErasedValueType(V, U)
and its expected type is any other type

After applying these rules, our tree typechecks again, we have successfully erased value
classes:

val m: ErasedValueType(Meter, Int) =
Meter.u2evt$(new Meter(3).underlying)

val a: Object = new Meter(Meter.evt2u$(m))

3.6 ElimErasedValueType
After Erasure, ErasedValueType is no longer needed: we will not do more type adap-
tations. Therefore, we can safely remove every use of evt2u$ and u2evt$ and replace
ErasedValueType(V,U) by U in every type, this is the purpose of ErasedValueType. This
phase will also remove the symbols V.evt2u$ and V.u2evt$ from the scope they were
entered in since they should not be used in any subsequent phase.

3.7 VCInline
Before describing what VCInline does, let us take a look at what we have accomplished
so far. We are able to translate the following code:

val m1: Meter = new Meter(1)
val m2: Meter = new Meter(2)
val m3: Meter = m1.plus(m2)

to this:

val m1: double = new Meter(1).underlying
val m2: double = new Meter(2).underlying
val m3: double = new Meter(m1).plus(new Meter(m2))

At first glance, it may look like we haven’t made any step towards solving our original
problem: we now have more allocations than at the start. But we have established an
important property: every val, var, method parameter or method return value whose
type was Meter in the source code is now an double. This means that we only call value
class constructors in two cases:

• When the JVM type system requires us to use a boxed representation. This occurs
when we upcast a value class to one of its supertype because these supertypes do
not have one unboxed representation (for example, class Foo(i: Int) extends
AnyVal and class Bar(d: Double) extends AnyVal both have AnyVal as a su-
pertype but their unboxed representations do not have any common supertype on
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the JVM), so we have to use a boxed representation. In this case the value class
transformation will not be able to avoid allocations.

• When we access the single field of the class or when we call a class method. In
both of these cases we can avoid allocation by using a few simple rewriting rules:
this is what VCInline does.

The goal of this phase is to elide value class constructor calls when possible. This is safe
because we disallow initialization statements as well as val and var fields inside value
classes, so constructor calls cannot have any side-effect.
For every value class V with a field underlying, this phase performs the following peep-
hole optimizations:

• v.m(args) where v is an expression of type V and m is a method defined in V is
rewritten as V.m$extension(v.underlying(), args)

• (new V(u)).underlying() is rewritten as u.

• new V(u1) == new V(u2) is rewritten as u1 == u2. This is guaranteed to be cor-
rect because of the definitions of equals and hashCode in SyntheticMethods, see
Section 3.3.

4 Future work and possible improvements
4.1 Value classes without explicit annotation
We require value classes to explicitely extend AnyVal, but the compiler could automat-
ically detect that a class follows the value class restrictions and treat it as if it was a
true value class. The main reason for not doing this is that making a class into a value
class is a binary incompatible change and it would be very surprising for users of the
language if a seemingly innocuous change to a class would break binary compatibility.
However, this optimization would be valid under a closed world assumption and could
be done by an optional linker phase for Dotty.

4.2 Allow overriding equals and hashCode in value classes and universal
traits

Currently, these two methods cannot be redefined by the user and are always synthesized
in SyntheticMethods (Section 3.3). This allows us to perform the following optimization
in VCInline (Section 3.7):

new V(u1) == new V(u2)

is rewritten as:

u1 == u2
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We cannot just disable this optimization if a value class or one of the universal trait it
extends redefines equals or hashCode because that would mean that adding or removing
these methods from value classes would be a binary-incompatible change. Instead, fol-
lowing a proposition by Dmitry Petrashko, we add the following overload of == to every
value class V:

// If V and its supertraits do not redefine equals nor hashCode:
def == (that: V): Boolean = this.underlying == that.underlying
// Otherwise:
def == (that: V): Boolean = this.equals(that)

Because of the value class transformation, having this overload in the class will result
in:

new V(u1) == new V(u2)

being rewritten as:

V.==$extension(u1, u2)

When neither equals nor hashCode are redefined this is as efficient as our original op-
timization: the body of V.==$extension will simply compare the underlying values
without boxing, otherwise it will box and delegate the equality check to equals.

4.3 Value classes and specialization
Dotty will soon support type parameter specialization [2, Chapter 4]. Since value classes
can contain type parameters the value class transformation may need to be adapted to
work well with the specialization transformation. In the current prototype for method
specialization [6] the transformation is done by a new phase TypeSpecializer placed
between Splitter and SeqLiterals (see Figure 1). This phase creates new specialized
methods to avoid boxing, for example:

def identity[@specialized(Int) T](x: T): T = x
val x: Int = identity(42)

becomes after TypeSpecializer:

def identity[@specialized(Int) T](x: T): T = x
def identity$mIc$sp(x: Int): Int = x
val x: Int = identity$mIc$sp(42)

A new specialized method is created and calls to the generic method are replaced by
calls to the specialized method when appropriate. To understand how this affect value
classes, let us see what happens with the following code:
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class Foo(val underlying: Int) extends AnyVal {
def foo[@specialized(Int) T](x: T): T = x

}
val x: Int = new Foo(1).foo[Int](2)

after ExtensionMethods this becomes:

class Foo(val underlying: Int) extends AnyVal {
def foo[@specialized(Int) T](x: T): T = Foo.foo$extension[T](this)(x)

}
object Foo {
def foo$extension[@specialized(Int) T]($this: Foo)(x: T): T = x

}
val x: Int = new Foo(1).foo[Int](2)

and after TypeSpecializer we get:

class Foo(val underlying: Int) extends AnyVal {
def foo[@specialized(Int) T](x: T): T = Foo.foo$extension[T](this)(x)
def foo$mIc$sp(x: Int): Int = Foo.foo$extension$mIc$sp[T](this)(x)

}
object Foo {
def foo$extension[@specialized(Int) T]($this: Foo)(x: T): T = x
def foo$extension$mIc$sp($this: Foo)(x: Int): Int = x

}
val x: Int = new Foo(1).foo$mIc$sp(2)

We would like to rewrite the last line to:

Foo.foo$extension$mIc$sp(1, 2)

But the current implementation of VCInline cannot do that: it relies on
ExtensionMethods#extensionMethod. For a method m, extensionMethod will simply
look for all the extension methods whose names start with m$extension and pick the
one whose signature agrees with the signature of m, but in our case we have a method
named foo$mIc$sp whose extension method is called foo$extension$mIc$sp, so it won’t
be found by extensionMethod. Below we discuss two potential ways of solving this issue,
but more work is needed to determine what the final solution will be.

4.3.1 Add an API to navigate between generic and specialized methods

For example, if we had the following methods available:

def specializedClassParams(specializedMeth: Symbol): List[Type]
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def specializedMethodParams(specializedMeth: Symbol): List[Type]
def genericMethod(specializedMeth: Symbol): Symbol
def specializedMethod(genericMeth: Symbol,
classParams: List[Type], methParams: List[Type]): Symbol

then finding the correct specialized extension method should be easy:

def specializedExtensionMethod(meth: Symbol): Symbol = {
val classParams = specializedClassParams(meth)
val methParams = specializedMethParams(meth)
val genericMeth = genericMethod(meth)
val genericExtensionMeth =
ExtensionMethods.extensionMethod(genericMeth)

specializedMethod(genericExtensionMeth, classParams, methParams)
}

4.3.2 Inline value class calls into extension methods calls before
TypeSpecialization

An alternative would be to move the VCInline rewriting rule for extension methods
to its own phase which would be run just before TypeSpecialization, we could call it
VCInlineCalls. The tree for our previous example would look like this after VCInlineCalls:

val x: Int = Foo.foo$extension[Int](new Foo(1), 2)

after TypeSpecializer this becomes:

val x: Int = Foo.foo$extension$mIc$sp(new Foo(1), 2)

and finally, after VCInline no allocation remain:

val x: Int = Foo.foo$extension$mIc$sp(1, 2)

Unfortunately, doing the rewriting before Erasure seems challenging when we have class
type parameters:

class Bar[T](val underlying: Int) extends AnyVal {
def bar: Int = 42

}
// e is an expression of type Bar
val x: Int = e.bar

We would like to rewrite e.bar to Bar.bar$extension[e.T](e), but this is difficult for
two reasons:
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• T is not accessible from outside the body of Bar, we will need to disable accessibility
checks.

• e might not be a stable path [1, Section 3.1], in this case we will need to rewrite
e.bar to:

{
val v = e
Bar.bar$extension[v.T](v)

}

4.4 Extension methods in universal traits
In our implementation of value classes, we do not generate extension methods for uni-
versal traits methods. This means that calling one of these methods on a value class
requires an allocation. Universal extension methods are more complex to implement
than class extension methods because a universal trait may be extended by value classes
with different underlying types: we need our extension methods to be polymorphic with-
out incurring any boxing overhead. In this section, we describe a scheme for achieving
this using class specialization, this scheme is based on Dmitry Petrashko’s proposal [4].
We will illustrate it using the following example:

trait Foo extends Any {
def foo = 0
def print = {
println(this.foo)
println(this)

}
}
class Bar(val underlying: Int) extends Foo {
def foo = this.underlying

}
val x = (new Bar(1)).print

The universal extension methods of Foo will be stored in an extension trait called
Foo$extension. We need to use a trait instead of a companion object so that we can
override universal extension methods: for example, the companion object Bar will extend
Foo$extension and override foo$extension. Previously, $this in extension methods
had the same type as this in the corresponding instance method and was only erased to
its underlying type in Erasure, but for universal traits no such erasure is possible since
they cannot be erased to one specific underlying type, so we need a new representation.
For universal traits, the type of $this is T, a trait type parameter which represent the
underlying type of the current value class. Instead of replacing this by $this in ex-
tension methods, we replace this.m(...) by m$extension($this, ...), and when a
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boxed representation of this is needed, we replace it by box$($this), where box$ is
an abstract method in each universal trait and defined in every value class. To be able
to override universal extension methods by class extension methods we need to use the
same representation of $this for class extension methods too. For example, the com-
panion object Bar will extend Foo$extension[Int] (because the underlying type of Bar
is Int), so $this will have type T=Int in the companion object Bar.

trait Foo$extension[@specialized T] {
def box$($this: T): Foo
def foo$extension($this: T) = 0
def print$extension($this: T) = {
println(foo$extension($this))
println(box$($this))

}
}
object Bar extends Foo$extension[Int] {
override def box$($this: Int): Bar = new Bar($this)
override def foo$extension($this: Int) = (new Meter($this)).underlying

}

We will not discuss in details the next steps because they depend on whether
TypeSpecializer is run before or after the inlining of value class calls, which is still
an open question (see Section 4.3). But in both cases, the end result should be that an
expression like (new Bar(3)).print will be translated to Bar.print$mIc$sp(3) which
achieves our goal of avoiding boxing when calling a method defined in a universal trait.

4.5 Incompatible type aliases
Ideally, value classes should never have any runtime cost, but because we require them
to follow the semantics of regular classes this is not the case. For example, it seems that
we should be able to represent Array[Meter] as an Array[int] at runtime using the
same mechanism that allows us to represent Meter as int at runtime, unfortunately the
two representations are not equivalent:

def genArray[T](arr: Array[T]) = {
arr[0] match {
case _: Meter => println(”I contain a Meter”)
case _ =>

}
}
val x = Array(new Meter(1))
genArray(x) // Should print ”I contain a Meter”
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Scala allows us to determine the type of a value at runtime using pattern matching and
isInstanceOf, this is useful but it also means that we cannot easily change the runtime
representation of values. We could represent x as an Array[int] and only convert it
to Array[Meter] when we pass it to a generic method, but having method calls take
O(n) operations would be very surprising for users. What we really need is the ability
to define a new type which is always erased to some other type. Scala already has a
notion of type aliases:

type Meter = Int

Here, Meter is a type alias of Int. It is useful to denote semantics but it does not
enforce any rule at compile-time (because Meter <: Int and Int <: Meter) or run-
time (because it will be erased to Int). We could introduce a new kind of type aliases
such that neither Meter <: Int or Int <: Meter are true but keep the property that
Meter erases to Int. This concept closely ressembles newtype in Haskell, so let’s use
that keyword:

newtype Meter = Int

Since Meter and Int are different types before Erasure, the only way to convert between
them is to use asInstanceOf. To be more type safe let us introduce two new methods
to do the conversion: asAlias and dealias, for example:

val x: Meter = 3.asAlias[Meter]
val y: Int = x.dealias

This way, Meter and Int are distinct types but we can still convert values between them
if we ask explicitly. Our new Meter type does not seem very useful: the only method we
can call on it is dealias, but we can make it behave like a value class easily by using an
implicit value class:

implicit class MeterOps(val self: Meter) extends AnyVal {
def plus(other: Meter): Meter =
(self.dealias + other.dealias).asAlias[Meter]

...
}
val m1: Meter = 1.asAlias[Meter]
val m2: Meter = 2.asAlias[Meter]
val m3: Meter = m1.plus(m2)

MeterOps will enrich Meter with new methods such as plus, and since it is a value class
these enrichments will not require any allocation. Furthermore, since we never store a
value of type MeterOps into a field or pass it to a method, we do not have to worry about
value class boxing, so we get the best of both worlds.
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However, newtype will probably not be added to the Scala language because it’s a new fea-
ture which overlaps with an existing one (value classes) and using it requires knowledge
about details of erasure that we would rather not burden the user with. Furthermore,
the JVM may end up getting support for real value types in the future [5] at which point
newtype would become mostly useless.

4.6 Value classes with multiple underlying fields
An implementation of value classes which supports multiple fields has already been
demonstrated [7]. However, their implementation required numerous rewriting rules
and it did not attempt to work around the JVM limitation of only one return value
(their implementation always boxes when returning a value class instance). So it is not
yet clear whether or not our implementation will be extended to support multiple fields.

5 Conclusion
In this report we have presented our implementation of value classes in Dotty. By itself,
our implementation is interesting because it is rather simple and integrates well into
the existing compiler architecture, but we have also tried to make our report detailed
enough to showcase how a feature gets integrated into a modern compiler. We proposed
some ways of extending our design and discussed how these extensions would increase
its complexity. Finally, we note that value classes in Scala can be seen as a ”workaround”
for the lack of value types on the JVM, and since value types are coming to the JVM [5],
we need to plan how this will affect our current implementation and possible future
improvements.
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