
Pathless Scala: A Calculus for the Rest of Scala
Guillaume Martres

EPFL

Lausanne, Switzerland

guillaume.martres@epfl.ch

Abstract
Recent work on the DOT calculus successfully put core as-

pects of Scala on a sound foundation, but subtyping in DOT is

structural and therefore not easily amenable to studying the

parts of Scala that are deeply tied to its nominal subtyping

system. On the other hand, the Featherweight Java calculus

has proven to be a great basis for studying many aspects

of Java and Java-like languages. Continuing this tradition,

we present Pathless Scala: an extension of Featherweight

Generic Java that closely models multiple inheritance and

intersection types as they exist in the Scala language today.

We define the semantics of Pathless Scala by erasing it to a

simpler calculus in a way that closely models how Scala is

compiled to Java bytecode in practice. More than a one-off,

we believe that this calculus could be extended to describe

many more features of Scala, although reconciling it with

DOT remains an open problem.

CCSConcepts: • Software and its engineering→ Formal
language definitions; Inheritance; Polymorphism.

Keywords: Trait, Featherweight, Erasure, Dotty, Java

ACM Reference Format:
Guillaume Martres. 2021. Pathless Scala: A Calculus for the Rest

of Scala. In Proceedings of the 12th ACM SIGPLAN International
Scala Symposium (SCALA ’21), October 17, 2021, Chicago, IL, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3486610.
3486894

1 Introduction
Formalizing a programming language lets us reason about

the behavior of programs in the language by developing

its metatheory but it also means that the implementation

strategies used by compilers can themselves be formalized.

While the DOT calculus [Amin et al. 2016] has been very

useful as a reasoning tool for various aspects of the Scala type

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SCALA ’21, October 17, 2021, Chicago, IL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-9113-9/21/10. . . $15.00

https://doi.org/10.1145/3486610.3486894

system, it is not really suitable for answering questions such

as "How do I compile this Scala program to Java bytecode?"
1
.

To answer this question our main source of inspiration

will be [Igarashi et al. 2001] which defines two calculi: Feath-

erweight Java (FJ) which models single-class inheritance and

Featherweight Generic Java (FGJ) which adds type parame-

ters to the language, and then proceeds to define a way to

compile FGJ to FJ via erasure.
We define Pathless Scala (PS) as an extension of FGJ with-

out casts (which we choose to not study), adding multiple

inheritance via traits and intersection types in the style of

DOT. Unlike DOT and as its name indicate, PS lacks type

members and therefore path-dependent types.

Real Scala compilers erase traits to Java interfaces, but FJ

does not model interfaces so cannot be directly used as a tar-

get for our erasure. Instead our target calculus is a fragment

of FJ&𝜆[Bettini et al. 2018] which extends FJ with interfaces.

FJ&𝜆 also supports intersections and lambdas, but because

these features are not present in Java bytecode, they are not

useful for our purpose and we do not use them in our erasure

mapping.

2 Syntax

𝐶, 𝐷, 𝐸 class name
𝑋,𝑌, 𝑍 type variable
𝑁, 𝑃,𝑄 ::= 𝐶 [𝑇] non-variable
𝑆,𝑇 ,𝑈 ::= 𝑋 | 𝑁 |𝑇 & 𝑇 type
𝐿 ::= class declaration
class𝐶 [𝑋 <: 𝑁] (𝑓 : 𝑇) ◁ 𝑁 (𝑓) , 𝑁 {𝑀} proper class

trait𝐶 [𝑋 <: 𝑁] ◁ 𝑁 {𝐻 ;𝑀} trait

𝐻 ::= def 𝑚[𝑋 <: 𝑁] (𝑥 : 𝑇) : 𝑇 abstract method
𝑀 ::= 𝐻 = 𝑒 concrete method
𝑓 , 𝑔 class parameter
𝑥,𝑦, 𝑧 variable
𝑒 ::= expression
𝑥 variable

𝑒.𝑓 getter call

𝑒.𝑚[𝑇] (𝑒) method call

new𝐶 [𝑇] (𝑒) object

Figure 1. Syntax of Pathless Scala

1
The answer to this question matters even when compiling Scala to a

different backend such as JavaScript, because alternative backends strive

to preserve the semantics of the JVM to ease cross-compilation [Doeraene

2018, § 2.1]

https://doi.org/10.1145/3486610.3486894
https://doi.org/10.1145/3486610.3486894
https://doi.org/10.1145/3486610.3486894

SCALA ’21, October 17, 2021, Chicago, IL, USA Guillaume Martres

To ease comparison between PS and FGJ, we reuse as

much as possible the conventions of FGJ: our metavariables

(Figure 1) with the same name have similar meanings, and

our typing and erasure rules reuse the name and format

of existing rules in FGJ when appropriate. Our notations

are essentially the same: we write "◁" as a shorthand for

"extends", an overline represents a possibly empty list or set,

• is the empty list or set and a comma allows concatenating

one or more element to the front of a list. We also make use

of
:::::
wavy

:::::::::
underlines to denote an optional part of a rule (if

multiple parts of a rule are marked optional, it means they

must all be present or all be absent, no in-between).

Just like in FGJ, a PS program consists of a class table

(which maps a class name to a class declaration) followed

by an expression. The declaration of a class defines its name,

type parameters, parent types and member methods (ab-

stract methods are allowed in traits but not in proper classes).

Proper classes also define a list of term parameters which

serve both as constructor parameters and getters. Our syntax

is faithful to Scala, except that that we omit the val keyword
in front of constructor parameters which we normally need

to generate getters. We informally define the mapping be-

tween well-formed cast-less FGJ programs and PS programs

with an example. The FGJ class declaration:

class A<T> ◁ B<T> {

D y;

A(C x, D y) {

super(x);

this.y = y;

}

<S ◁ T> C foo(C z) { return new B<S>(z).bar<C>(y).f; }

}

can be translated into:

class A[T](x: C, y: D) ◁ B[T](x) {

def foo[S <: T](z: C): C = new B[S](z).bar[C](y).f

}

We do not need to support translating more complex con-

structors because of the restrictions imposed on well-formed

classes by FGJ.

For convenience, we define auxiliary functions returning

the parents and the method declarations of applied class

types:

parents(Object) = •
mdecls(Object) = •

class𝐶 ◁ 𝑃 (...) , 𝑄 {𝑀}
parents(𝐶 [𝑇]) = [𝑇 /𝑋] (𝑃,𝑄)
mdecls(𝐶 [𝑇]) = [𝑇 /𝑋]𝑀

trait𝐶 [𝑋 <: 𝑁] ◁ 𝑃 {𝐻 ;𝑀}
parents(𝐶 [𝑇]) = Object, [𝑇 /𝑋]𝑃
mdecls(𝐶 [𝑇]) = [𝑇 /𝑋] (𝐻,𝑀)

As an example, using the definition of A above we have:

parents(A[Object]) = B[Object]
mdecls(A[Object]) = def foo[S <: Object] (z : C) : C = . . .

The set of base types of 𝑁 is the transitive closure of

parents(𝑁) plus 𝑁 itself.

3 Multiple Inheritance in Scala
The main difference between trait inheritance in Scala and

interface inheritance in Java is that the order in which par-

ent traits are inherited matter. In particular, Scala defines

a canonical order of the base types of a class called its lin-
earization.

3.1 L(𝑵): The Base Types of 𝑵 in Linearization
Order

[Odersky and Zenger 2005] defines linearization for class

types𝐶 , but it is useful to generalize it to non-variable types

𝑁 :

𝑁1, ..., 𝑁𝑛 = parents(𝑁)
L(𝑁) = 𝑁,L(𝑁𝑛) ®+ ... ®+ L(𝑁1)

Where ®+ denotes concatenation with elements on the right

replacing identical elements of the left operand. It is illegal

to inherit the same class twice if it is applied to different type

arguments
2
and so ®+ is undefined in that case:

• ®+ 𝑁 = 𝑁

𝑁0 ∈ 𝑁𝑟

(𝑁0, 𝑁𝑙) ®+ 𝑁𝑟 = 𝑁𝑙 ®+ 𝑁𝑟

𝑁0 = 𝐶0 [...] 𝑁𝑟 = 𝐶𝑟 [...] 𝐶0 ∉ 𝐶𝑟

(𝑁0, 𝑁𝑙) ®+ 𝑁𝑟 = 𝑁0, (𝑁𝑙 ®+ 𝑁𝑟)

We will use linearization to determine which base type

of 𝑁 contains the implementation of𝑚 that will be called at

runtime which we dub the implementer of𝑚 in 𝑁 .

3.2 mimpl(𝒎,𝑵): The Implementer of 𝒎 in 𝑵

The following class table is legal:

class One; class Two

trait Base { def foo(): Object }

trait Sub1 ◁ Base { def foo(): Object = new One }

trait Sub2 ◁ Base { def foo(): Object = new Two }

class A ◁ Object, Sub1, Sub2

2
In real Scala this is in fact possible with variant type parameters.

Pathless Scala: A Calculus for the Rest of Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

However, the equivalent class table in Java (using interface
instead of trait) would be illegal: both Sub1 and Sub2 con-

tain a concrete implementation of foo and neither trait over-
rides the other. By contrast, in Scala this typechecks

3
and

(new A).foo() will evaluate to new Two() because Sub2
precedes Sub1 in the linearization of A.

In general, concrete methods override abstract methods

in both Java and Scala, but if we compare a concrete method

𝑀 defined in 𝐶 with another concrete method𝑀 ′
defined in

𝐷 then:

• In Java,𝑀 overrides𝑀 ′
if 𝐷 is a base type of 𝐶 .

• In Scala,𝑀 overrides𝑀 ′ in𝑵 if𝐶 precedes𝐷 inL(𝑵).
Since a type 𝑃 will always appear before its parent in

any linearization involving 𝑃 , this generalizes the Java

rule.

From this it follows that mimpl(𝑚, 𝑁) must be the first

type in L(𝑁) containing a concrete declaration of𝑚. In the

example above we had L(A) = A, Sub2, Sub1, Object and so
we get mimpl(foo, A) = Sub2 as expected.

For a class𝐶 to be well-formed, it is not enough for mimpl
to be defined for all its members, we must also check that

the selected implementations are valid overrides.

3.3 isValid(𝒎, 𝑪): The Implementation of 𝒎 in 𝑪 Is
a Valid Override of All Declarations of 𝒎 in the
Base Types of 𝑪

Like in Java, for an override to be valid its type must match

the type of all the overridden methods, meaning the type and

term parameters must be identical (up to alpha-renaming

which we do not model) and the result type is allowed to vary

covariantly. Additionally, the override must not be accidental,
a concept specific to Scala.

class𝐶 [𝑋 <: 𝑁] ... 𝑁𝑖 = mimpl(𝑚,𝐶 [𝑋])
∀n ∈ L(𝐶 [𝑋]) . override

𝑋<:𝑁
(𝑚, 𝑁𝑖 , n) and

noAccidentalOverride(𝑚, 𝑁𝑖 , n)
isValid(𝑚,𝐶)

3.3.1 override𝚫 (𝒎,𝑵𝒊,𝑵𝒐): the Type of 𝒎 in 𝑵𝒊 Over-
rides the Type of 𝒎 in 𝑵𝒐 in the Type Environment 𝚫.
The following class table is illegal:

class One; class Two

trait L { def foo(): One = new One }

trait R { def foo(): Two = new Two }

class LR ◁ L, R {}

Even though mimpl(foo, LR) = R, the override is invalid

because Two is not a subtype of One. This is enforced by:

3
To be precise, foo in Sub2 needs to be declared with the override keyword
for A to compile, but we do not model this in our calculus: when translating

code from PS into real Scala, override should be added everywhere it is

legal to do so [Odersky et al. 2021, § 5.2.3].

def 𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇) : 𝑇𝑖 = ... ∈ mdecls(𝑁𝑖)
def 𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇) : 𝑇𝑜 = ...:::

∈ mdecls(𝑁𝑜)
Δ, 𝑌 <: 𝑃 ⊢ 𝑇𝑖 <: 𝑇𝑜

overrideΔ (𝑚, 𝑁𝑖 , 𝑁𝑜)
Interestingly, our definition of override is more expres-

sive than the one in FGJ as it takes a type environment Δ
representing the type parameters of the class. This is needed

to be able to typecheck:

class X

class Base { def foo(): X = ... }

class Sub[S <: X] ◁ Base { def foo(): S = ... }

The corresponding Java code is valid and yet Sub is not well-
formed in FGJ because the type parameter S <: X is not in the
type environment when the override check is done [Igarashi

et al. 2001, Figure 6].

3.3.2 noAccidentalOverride(𝒎,𝑵𝒊,𝑵𝒐): 𝒎 in 𝑵𝒊 Does
Not Accidentally Override 𝒎 in 𝑵𝒐 . The following class

table is not well-formed in Scala:

class One; class Two

trait Base { def foo(): Object }

trait Sub1 ◁ Base { def foo(): Object = ... }

trait Unrelated { def foo(): Object }

trait Sub2 ◁ Unrelated { def foo(): Object = ... }

class A ◁ Object, Sub1, Sub2

Although we have mimpl(foo, A) = Sub2 and

override(𝑚, Sub2, Sub1), the compiler complains
4
:

method foo in trait Sub2 cannot override
a concrete member without a third
member that’s overridden by both (this
rule is designed to prevent "accidental
overrides")

In other words, when 𝑁𝑖 overrides a concrete member 𝑚

defined in𝑁𝑜 , wemust ensure that𝑁𝑖 and𝑁𝑜 have a common

base type which also declares𝑚:

isConcrete(𝑚, 𝑁𝑜) 𝑁𝑐 = L(𝑁𝑖) ∩ L(𝑁𝑜)
∃n ∈ 𝑁𝑐 . def 𝑚 ... ∈ mdecls(n)

noAccidentalOverride(𝑚, 𝑁𝑖 , 𝑁𝑜)

isAbstract(𝑚, 𝑁𝑜)
noAccidentalOverride(𝑚, 𝑁𝑖 , 𝑁𝑜)

4 Typing
4.1 Subtyping and Well-Formedness
Most of the subtyping and well-formedness rules (Figures 2

and 3) are straightforward adaptations of the FGJ rules with

S-CLASS and WF-CLASS generalized to handle traits. The

4
after adding override to the definition of foo in Sub2

SCALA ’21, October 17, 2021, Chicago, IL, USA Guillaume Martres

Δ ⊢ 𝑆 <: 𝑆 [S-REFL] Δ ⊢ 𝑋 <: Δ(𝑋) [S-VAR]

Δ ⊢ 𝑆 <: 𝑇 Δ ⊢ 𝑇 <: 𝑈

Δ ⊢ 𝑆 <: 𝑈
[S-TRANS]

𝑃 ∈ parents(𝑁)
Δ ⊢ 𝑁 <: 𝑃

[S-CLASS]

Δ ⊢ 𝑇1 <: 𝑇
Δ ⊢ 𝑇1 & 𝑇2 <: 𝑇

[S-AND11]

Δ ⊢ 𝑇2 <: 𝑇
Δ ⊢ 𝑇1 & 𝑇2 <: 𝑇

[S-AND12]

Δ ⊢ 𝑇 <: 𝑇1 Δ ⊢ 𝑇 <: 𝑇2

Δ ⊢ 𝑇 <: 𝑇1 & 𝑇2
[S-AND2]

Figure 2. Subtyping

Δ ⊢ Object ok [WF-OBJECT]

𝑋 ∈ dom(Δ)
Δ ⊢ 𝑋 ok

[WF-VAR]

{
class
trait

}
𝐶 [𝑋 <: 𝑁] ... Δ ⊢ 𝑇 ok Δ ⊢ 𝑇 <: [𝑇 /𝑋]𝑁

Δ ⊢ 𝐶 [𝑇] ok
[WF-CLASS]

Δ ⊢ 𝑇1 ok Δ ⊢ 𝑇2 ok
Δ ⊢ 𝑇1 & 𝑇2 ok

[WF-AND]

Figure 3. Well-formed types

rules for intersections however are lifted from the DOT cal-

culus [Rompf and Amin 2016, Figure 1]. The subtyping re-

lationship defined by these rules induces a partial order in

which 𝑇1 & 𝑇2 is the greatest lower bound of 𝑇1 and 𝑇2.

Note that intersections in Scala are first-class types: they

can appear in any position and members of an intersection

can be arbitrary types, by contrast in Java the operands of the

intersection cannot be type variables and the intersection

itself can only appear in casts and upper-bounds of type

parameters.

4.2 Typing Expressions
The typing rules for expressions (Figure 4) are also very close

to the FGJ rules, but the helper functions getters (which

corresponds to fields in FGJ) and mtype are different. Both
of these functions take a subscript representing the type

environment.

4.2.1 getters
𝚫
(𝑻): The List ofGettersAccessible From

aValue of Type 𝑻 . We can read the getters of a class directly

from its definition (we do not need to recurse on its parent

class because GT-CLASS ensures that the class parameters

of a well-formed class includes the class parameters of its

parent):

gettersΔ (𝑋) = gettersΔ (Δ(𝑋))
gettersΔ (Object) = •

class𝐶 [𝑋 <: 𝑁] (𝑓 : 𝑈) ...
gettersΔ (𝐶 [𝑇]) = [𝑇 /𝑋] 𝑓 : 𝑈

trait𝐶 [...] ...
gettersΔ (𝐶 [𝑇]) = •

In an intersection, the getters will usually be defined only

on one side, but if they happen to be defined on both sides

we can safely take the union without worrying about the

same getter appearing with different types since GT-CLASS

also ensures that we cannot inherit from multiple unrelated

classes and that getters in sub-classes and super-classes have

matching types:

Pathless Scala: A Calculus for the Rest of Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

gettersΔ (𝑇1 & 𝑇2) =
gettersΔ (𝑇1) ∪ gettersΔ (𝑇2) if both sides are defined

gettersΔ (𝑇1) if it is defined

gettersΔ (𝑇2) otherwise

4.2.2 mtype
𝚫
(m, 𝑻): The Type of the Method 𝒎 in 𝑻 .

Given x : L & R and the class table:

trait L { def foo(): A }

trait R { def foo(): B }

What is the type of x.foo()? In Java (and FJ&𝜆) this would

be an error, even though one can override both of these

methods at once via covariant overriding. The problem is

that there is no Java type representing the greatest lower

bound of A and B, whereas as we’ve seen above in Scala this

is simply A & B. This means we can define:

mtypeΔ (𝑚,𝑇1) = [𝑌 <: 𝑃] → 𝑆 → 𝑈1

mtypeΔ (𝑚,𝑇2) = [𝑌 <: 𝑃] → 𝑆 → 𝑈2

Δ𝑚 = Δ, 𝑌 <: 𝑃

𝑈12 =

𝑈1 if Δ𝑚 ⊢ 𝑈1 <: 𝑈2

𝑈2 if Δ𝑚 ⊢ 𝑈2 <: 𝑈1

𝑈1 & 𝑈2 otherwise

mtypeΔ (𝑚,𝑇1 & 𝑇2) = [𝑌 <: 𝑃] → 𝑆 → 𝑈12

(we could also write𝑈12 = 𝑈1 & 𝑈2 if we took care to always

normalize types when comparing them for equality). The

rules for the remaining cases are then unsurprising:

mtypeΔ (𝑚,𝑋) = mtypeΔ (𝑚,Δ(𝑋))

def 𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇) : 𝑇 = ...
:::

∈ mdecls(𝑁)

mtypeΔ (𝑚, 𝑁) = [𝑌 <: 𝑃] → 𝑇 → 𝑇

parents(𝑁) = 𝑁1, ..., 𝑁𝑛 def 𝑚 ... ∉ mdecls(𝑁)
mtypeΔ (𝑚, 𝑁) = mtypeΔ (𝑚, 𝑁1 & ... & 𝑁𝑛)

mtypeΔ (𝑚,𝑇1) defined mtypeΔ (𝑚,𝑇2) undefined
mtypeΔ (𝑚,𝑇1 & 𝑇2) = mtypeΔ (𝑚,𝑇1)

mtypeΔ (𝑚,𝑇1) undefined mtypeΔ (𝑚,𝑇2) defined
mtypeΔ (𝑚,𝑇1 & 𝑇2) = mtypeΔ (𝑚,𝑇2)

4.3 Typing Declarations
Figure 5 lists the typing rules for declarations. Unlike FGJ

override validation happens when typing the class (using

the isValid judgment we defined in the previous section)

and not the method since we need to check the validity of

overrides defined in parents too. Unlike Scala, we do not

perform override validation in traits since these checks are

redundant with the ones done on the classes extending those

traits, although in practice it’s of course better to find out

about errors at the definition site rather than at the use site.

4.3.1 Checking for Abstract Methods in Classes. One
might assume that a method is abstract in a class if there are

no concrete implementation of this method among its base

types. However, both Java and Scala 3 allow "re-abstracting"

a method, for example in:

trait Base { def foo(): Object = ... }

trait Sub ◁ Base { def foo(): Object }

class A ◁ Object, Sub

class B ◁ Object, Base, Sub

A and B have the same linearization so we’d expect them to

be equivalent, but in fact an inherited method is considered

abstract in a class if it is abstract among all the parents of this

class, so A is not well-formed since it only inherits an abstract

foo from Sub. Although this concept exists in Java, it is not

modelized in FJ&𝜆 which does not allow an abstract method

to override a concrete one
5
. To represent this we define

the mutually recursive mnames𝑎𝑏𝑠 (𝑁) and mnames𝑐𝑜𝑛 (𝑁) to
be the sets of names of respectively abstract and concrete

members of 𝑁 :

mdecls(𝑁) = def 𝑚𝑎𝑏𝑠 ...; def 𝑚𝑐𝑜𝑛 ... = ...

𝑃 = parents(𝑁)
mnames𝑐𝑜𝑛 (𝑁) =𝑚𝑐𝑜𝑛 ∪ (mnames𝑐𝑜𝑛 (𝑃) ∖𝑚𝑎𝑏𝑠)

mnames𝑎𝑏𝑠 (𝑁) =𝑚𝑎𝑏𝑠 ∪ (mnames𝑎𝑏𝑠 (𝑃) ∖ mnames𝑐𝑜𝑛 (𝑃))
GT-CLASS then takes care of checking that mnames𝑎𝑏𝑠 is

empty for proper classes. For convenience we also define the

set of all method names in 𝑁 as:

mnames(𝑁) = mnames𝑎𝑏𝑠 (𝑁) ∪ mnames𝑐𝑜𝑛 (𝑁)

5 Erasure
Our target calculus is FJ&𝜆 without lambdas or intersections,

we name the resulting fragment Featherweight Java with

Default methods (FJD)
6
.

5.1 Type Erasure
Given a type environment Δ, we write |𝑇 |Δ for the type

erasure of 𝑇 which is defined in FGJ as:

|𝑋 |Δ = |Δ(𝑋) |Δ
|𝐶 [...] |Δ = 𝐶

In general, we strive to have erasure preserve as much of

the structure of the original program as possible to keep

the translation simple and to allow interoperability between

programs written in the source and target language. In par-

ticular, the mapping above preserves subtyping in FGJ: if

5
see the definition of mh in [Bettini et al. 2018, p. 15]

6
FJI was already taken by Featherweight Java with Inner classes [Igarashi

and Pierce 2002].

SCALA ’21, October 17, 2021, Chicago, IL, USA Guillaume Martres

𝑥 : 𝑇 ∈ Γ

Δ, Γ ⊢ 𝑥 : 𝑇
[GT-VAR]

Δ, Γ ⊢ 𝑒0 : 𝑇0 gettersΔ (𝑇0) = 𝑓 : 𝑇

Δ, Γ ⊢ 𝑒0 .𝑓𝑗 : 𝑇𝑗
[GT-FIELD]

Δ, Γ ⊢ 𝑒0 : 𝑇0 mtypeΔ (𝑚,𝑇0) = [𝑌 <: 𝑃] → 𝑈 → 𝑈0

Δ ⊢ 𝑉 ok Δ ⊢ 𝑉 <: [𝑉 /𝑌]𝑃 Δ, Γ ⊢ 𝑒 : 𝑆 Δ ⊢ 𝑆 <: [𝑉 /𝑌]𝑈
Δ, Γ ⊢ 𝑒0 .𝑚[𝑉] (𝑒) : [𝑉 /𝑌]𝑈0

[GT-INVK]

Δ ⊢ 𝑁 ok gettersΔ (𝑁) = 𝑓 : 𝑇 Δ, Γ ⊢ 𝑒 : 𝑆 Δ ⊢ 𝑆 <: 𝑇

Δ, Γ ⊢ new𝑁 (𝑒) : 𝑁
[GT-NEW]

Figure 4. Syntax Directed Typing Rules

Δ = 𝑋 <: 𝑁,𝑌 <: 𝑃 Δ ⊢ 𝑇,𝑇0, 𝑃 ok Δ;𝑥 : 𝑇, this : 𝐶 [𝑋] ⊢ 𝑒0 : 𝑆
:::::::::::::::::::::

Δ ⊢ 𝑆 <: 𝑇0
::::::::

def 𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇) : 𝑇0 = 𝑒0
:::

OK IN 𝐶 [𝑋 <: 𝑁]
[GT-METHOD]

𝑋 <: 𝑁 ⊢ 𝑁,𝑈 ,𝑇 , 𝑃,𝑄 OK getters∅ (𝑃) = 𝑔 : 𝑈 𝑀 OK IN 𝐶 [𝑋 <: 𝑁] isClass(𝑃)
isTrait(𝑄) If mimpl(𝑚,𝐶 [𝑋]) is defined then isValid(𝑚,𝐶) must also be defined mnames𝑎𝑏𝑠 (𝐶) = •

class𝐶 [𝑋 <: 𝑁] (𝑔 : 𝑈 , 𝑓 : 𝑇) ◁ 𝑃 (𝑔) , 𝑄 {𝑀} OK
[GT-CLASS]

𝑋 <: 𝑁 ⊢ 𝑁,𝑄 OK 𝐻,𝑀 OK IN 𝐶 [𝑋 <: 𝑁] isTrait(𝑄)
trait𝐶 [𝑋 <: 𝑁] ◁𝑄 {𝐻 ;𝑀} OK

[GT-TRAIT]

Figure 5. Declaration Typing Rules

𝐶, 𝐷, 𝐸 type
𝐿 ::= class declaration
class𝐶 ◁𝐶 , 𝐶 {𝐶 𝑓 ;𝐾 ;𝑀} proper class

interface𝐶 ◁𝐶 {𝐻 ;𝑀} interface

𝐻 ::= 𝐶𝑚(𝐶 𝑥) abstract method
𝑀 ::= 𝐻 = 𝑒 concrete method
𝑓 , 𝑔 class field
𝑥,𝑦, 𝑧 variable
𝑒 ::= expression
𝑥 variable

𝑒.𝑓 field access

𝑒.𝑚(𝑒) method call

new𝐶 (𝑒) object

(𝐶)𝑒 cast

Figure 6. Syntax of FJD

Δ ⊢ 𝑆 <:𝐹𝐺 𝐽 𝑇 then |𝑆 |Δ <:𝐹 𝐽 |𝑇 |Δ (Lemma A.3.5𝐹𝐺 𝐽) which

reduces the amount of casts that need to be inserted when

erasing expressions to a minimum (Theorem 4.5.3𝐹𝐺 𝐽).

Unfortunately, no matter how we erase intersection types,

we cannot preserve subtyping in general because although

𝑇1 & 𝑇2 is the greatest lower bound of 𝑇1 and 𝑇2, there might

not exist a specific type in FJD representing the greatest

lower bound of |𝑇1 |Δ and |𝑇2 |Δ 7
. Nevertheless, since we’re

trying to preserve as much structure as possible, it seems

logical to define:

|𝑇1 & 𝑇2 |Δ = erasedGlb(|𝑇1 |Δ, |𝑇2 |Δ)

where erasedGlb always returns one of its arguments. In

fact this is what both Java and Scala do, but they differ on

the implementation of erasedGlb:

• Java simply defines erasedGlb(𝑇1,𝑇2) = 𝑇1 [Gosling
et al. 2015, § 4.6]. This means the user can tweak the

erasure by reordering types which can be useful for

evolving code in a binary-compatible way.

7
Technically, subtyping would be preserved if we erased all types to Object,
but this would defeat the point since it would require many more casts in

expression erasure and impede interoperability between Scala and Java.

Pathless Scala: A Calculus for the Rest of Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

|𝑥 |Δ,Γ = 𝑥 [E-VAR]

Δ; Γ ⊢ 𝑒0 : 𝑇0 |𝑇0 |Δ = 𝐶

|𝑒0 .𝑓 |Δ,Γ = |𝑒0 |𝐶Δ,Γ .𝑓
[E-FIELD]

Δ; Γ ⊢ 𝑒0 : 𝑇0 erasedReceiverΔ (𝑚,𝑇0) = 𝐶 mtypeFJD (𝑚𝐶 ,𝐶) = 𝑈 → 𝑈0 𝑒 ′𝑖 = |𝑒𝑖 |𝑈𝑖

Δ,Γ

|𝑒0 .𝑚[𝑉] (𝑒) |Δ,Γ = |𝑒0 |𝐶Δ,Γ .𝑚𝐶 (𝑒 ′𝑖)
[E-INVK]

|𝑁 |Δ = 𝐶 fieldsFJD (𝐶) = 𝑓 : 𝑇 𝑒 ′𝑖 = |𝑒𝑖 |𝑇𝑖Δ,Γ
|new𝑁 (𝑒) |Δ,Γ = new𝐶 (𝑒 ′)

[E-NEW]

Figure 7. Expression Erasure

Γ = 𝑥 : 𝑇, this : 𝐶 [𝑋] Δ = 𝑋 <: 𝑁,𝑌 <: 𝑃

|def 𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇) : 𝑇0 = 𝑒0
:::

|
𝑋<:𝑁,𝐶

= |𝑇0 |Δ𝑚𝐶 (|𝑇 |Δ 𝑥) {return |𝑒0 | |𝑇0 |Δ,Γ ; }
:::::::::::::

[E-METHOD]

Δ = 𝑋 <: 𝑁

𝐾 = 𝐶 (|𝑈 |Δ 𝑔, |𝑇 |Δ 𝑓){super(𝑔); this.𝑓 = 𝑓 ; } 𝑀 ′ = |𝑀 |Δ,𝐶 ∪ { bridges(m,𝐶) | ∀m ∈ mnames(𝐶) }
|class𝐶 [𝑋 <: 𝑁] (𝑔 : 𝑈 , 𝑓 : 𝑇) ◁ 𝑃 (𝑔) , 𝑄 {𝑀}| = class𝐶 ◁ |𝑃 |Δ , |𝑄 |Δ {|𝑇 |Δ 𝑓 ;𝐾 ;𝑀 ′}

[E-CLASS]

Δ = 𝑋 <: 𝑁 𝑀 ′ = |𝑀 |Δ,𝐶
|trait𝐶 [𝑋 <: 𝑁] ◁𝑄 {𝑀}| = interface𝐶 ◁ |𝑄 |Δ {𝑀 ′}

[E-TRAIT]

Figure 8. Class Table Erasure

• On the other hand, Scala 2 defines erasedGlb to pre-

fer subtypes over supertypes (thus actually return-

ing the greatest lower bound of the erased types) and

proper classes over traits (because both casting and

method call are usually faster on classes than on in-

terfaces [Click and Rose 2002; Shipilëv 2020]). Unfor-

tunately, completely specifying the behavior of Scala

2 here is extremely hard because it inadvertently de-

pends on implementation details of the compiler
8

• Scala 3 preserves the two properties from Scala 2 men-

tioned above and additionally ensures that erasure

preserves commutativity of intersection (|𝑇1 & 𝑇2 |Δ =

|𝑇2 & 𝑇1 |Δ) by applying a tie-break based on the lexo-

graphical order of the names of the compared types.

The following pseudo-code accurately specifies its be-

havior
9
:

1 def erasedGlb(tp1: Type, tp2: Type): Type =

2 if tp1.isProperClass && !tp2.isProperClass then

8
See https://github.com/lampepfl/dotty/blob/master/compiler/src/dotty/
tools/dotc/core/unpickleScala2/Scala2Erasure.scala for the unsavory

details.

9
The complete implementation also special-cases value types and ar-

ray types which we do not model in our calculus, see erasedGlb
in https://github.com/lampepfl/dotty/blob/master/compiler/src/dotty/tools/
dotc/core/TypeErasure.scala

3 return tp1

4 if tp2.isProperClass && !tp1.isProperClass then

5 return tp2

6 if tp1 <: tp2 then return tp1

7 if tp2 <: tp1 then return tp2

8 if tp1.name <= tp2.name then tp1 else tp2

The Scala 3 algorithm preserves most interesting proper-

ties of intersections but has one non-obvious shortcoming:

it does not preserve associativity, consider:

trait X; trait Y; trait Z extends X

Then |(X & Y) & Z| = Z but |X & (Y & Z)| = X. The problem
is that while the lexicographic ordering by itself is total, it is

applied inconsistently because incomparability of subtyping
is not transitive: in our example neither X <: Y nor Y <: X
making X and Y incomparable, but even though Y and Z are
also incomparable it is not true that X and Z are incomparable.

To rectify this we propose
10
ordering classes by the num-

ber of base types they have. In other words, we replace the

subtyping checks on lines 6 and 7 in the listing above by:

val relativeLength = L(tp1).length - L(tp2).length
if relativeLength > 0 then return tp1

10
Since this change would break binary compatibility, it will have to wait

until the next major version of Scala.

https://github.com/lampepfl/dotty/blob/master/compiler/src/dotty/tools/dotc/core/unpickleScala2/Scala2Erasure.scala
https://github.com/lampepfl/dotty/blob/master/compiler/src/dotty/tools/dotc/core/unpickleScala2/Scala2Erasure.scala
https://github.com/lampepfl/dotty/blob/master/compiler/src/dotty/tools/dotc/core/TypeErasure.scala
https://github.com/lampepfl/dotty/blob/master/compiler/src/dotty/tools/dotc/core/TypeErasure.scala

SCALA ’21, October 17, 2021, Chicago, IL, USA Guillaume Martres

if relativeLength < 0 then return tp2

This still means we prefer subtypes over supertypes since

a subclass necessarily has more base types than any of its par-

ent, but incomparability is now transitive which is enough

to make erasedGlb itself transitive.

In the rest of this section, we will assume erasedGlb
prefers classes over traits as well as subtypes over super-

types but otherwise will stay independent of any particular

implementation.

5.2 Expression Erasure
Because type erasure does not preserve subtyping we might

need to insert casts both on prefixes of calls as well as on

method arguments. To keep the typing rules in Figure 7 read-

able, we delegate casting |𝑒 |Δ,Γ to𝑇 to an auxiliary judgment

|𝑒 |𝑇Δ,Γ which is mutually recursive with the main judgment:

𝑒 ′ = |𝑒 |Δ,Γ Γ ⊢𝐹 𝐽 𝐷 𝑒 ′ : 𝑆

|𝑒 |𝑇Δ,Γ =

{
𝑒 ′ if 𝑆 <:𝐹 𝐽 𝐷 𝑇

(𝑇)𝑒 ′ otherwise

Casting the prefix of a getter call to the appropriate type

is easy: we know that erasedGlb will always return the

most specific class type in an intersection and that traits do

not contain getters, therefore if gettersΔ (𝑇0) = 𝑓 : 𝑇 then

fieldsFJD (|𝑇0 |Δ) = 𝑓 : |𝑇 |Δ and E-FIELD is straight-forward,

but finding the right cast for the receiver of a method call is

more involved.

5.2.1 erasedReceiverΔ (𝒎,𝑵): The First Erased Parent
Type Where 𝒎 Is Defined.
Given x : L & R and the class table:

trait L { def l(): Object }

trait R { def r(): Object }

Then the type of |x|Δ,Γ will be either 𝐿 or 𝑅 (depending on the

definition of erasedGlb), but that means that one of x.l()
and x.r() will require casting the receiver, therefore E-INVK
relies on the following auxiliary function:

erasedReceiverΔ (𝑚,𝑋) = erasedReceiverΔ (𝑚,Δ(𝑋))
erasedReceiverΔ (𝑚,𝐶 [...]) = 𝐶
erasedReceiverΔ (𝑚,𝑇1 & 𝑇2) ={
erasedReceiverΔ (𝑚,𝑇1) if mtypeΔ (𝑚,𝑇1) is defined
erasedReceiverΔ (𝑚,𝑇2) otherwise

Additionally, erasure does not preserve method names:𝑚

is erased to𝑚𝐶 where 𝐶 is the type of the receiver, this is

justified in the following section.

5.3 Class Table Erasure
Given the class table:

trait X; class Y extends X

trait L[T] { def foo(): T }

trait R[T <: X] { def foo(): T }

class A ◁ Object, L[Y], R[Y] {

def foo(): Y = new Y

}

One might hope we could erase it just by erasing each type

and expression appearing in it:

interface L { Object foo() }

interface R { X foo() }

class A ◁ Object, L, R {

Y foo() { return new Y(); }

}

But that would be incorrect: a method in FJD must have

exactly the same type as the methods it overrides (just like

in Java bytecode). Compilers normally handle this by gener-

ating synthetic bridge methods [Bracha et al. 2003]:
interface L { Object foo() }

interface R { X foo() }

class A ◁ Object, L, R {

Y foo() { return new Y(); }

Object foo() { return <overload of foo returning Y>(); }

X foo() { return <overload of foo returning Y>(); }

}

Notice that the types of the new methods added in A match

the types of the overridden methods in L and R and sim-

ply forward to the actual implementation of foo in A, thus
restoring the semantics present in the source program. But

we cannot directly reuse this technique since our target cal-

culus does not support overloading, faced with the same

problem FGJ adopted the following strategy:

In [Generic Java], the actual erasure is some-

what more complex, involving the introduc-

tion of bridge methods [. . .] instead, the rule

E-METHOD merges two methods into one by

inline-expanding the body of the actual method

into the body of the bridge method.

But this works because FGJ only supports single-class inheri-

tance, whereas in the example above we need two bridges in

A corresponding to the two traits containing an overridden

foo. Like FGJ, we shy away from introducing overloading in

our target calculus and instead employ the following scheme:

• When erasing a call to𝑚, we replace it by a call to𝑚𝐶

where 𝐶 is the erased receiver of𝑚 (see the previous

section).

• When erasing the declaration of𝑚 in 𝐶 , we rename it

to𝑚𝐶 .

• When erasing a class 𝐶 , we add enough bridge meth-

ods so that erased calls to 𝑚 always end up being

forwarded to the implementer of𝑚 in 𝐶 .

For our example this means we get:

interface L { Object foo𝐿() }

interface R { X foo𝑅() }

class A ◁ Object, L, R {

Y foo𝐴 { return new Y(); }

Pathless Scala: A Calculus for the Rest of Scala SCALA ’21, October 17, 2021, Chicago, IL, USA

Object foo𝐿 { return this.foo𝐴(); }

X foo𝑅 { return this.foo𝐴(); }

}

This scheme wouldn’t be practical in a real compiler since

it would make it much harder for Java and Scala code to

interoperate, but as a model we believe it’s close enough to

the real thing to be useful. The exact rules are described in

Figure 8 which makes use of the following judgments:

mtypeFJD (𝑚𝐸, 𝐸) = 𝑇 → 𝑇0

mtypeFJD (𝑚𝐷 , 𝐷) = 𝑈 → 𝑈0

𝑥0 = this.𝑚𝐷 (𝑒) 𝑒𝑖 =

{
𝑥𝑖 if𝑇𝑖 = 𝑈𝑖

(𝑈𝑖)𝑥𝑖 otherwise

bridge(𝑚𝐸,𝑚𝐷) = 𝑇0𝑚𝐸 (𝑇 𝑥) {return 𝑒0; }

mimpl(𝑚, 𝑁) = 𝐷 [𝑇]
𝐸 [...] = { n ∈ L(𝑁) ∖ 𝐷 [𝑇] | def 𝑚 ... ∈ mdecls(n)}

bridges(𝑚, 𝑁) = bridge(𝑚𝐸,𝑚𝐷)
Note that this definition of bridges can generate unneces-

sary bridges since it does not take into account that a parent

class might already have defined an equivalent bridge.

6 Related Work
6.1 Multiple Inheritance and the Diamond Problem
What should happen when multiple matching methods from

unrelated classes are inherited? There is no standard solu-

tion here but languages usually pick one of the following

approaches:

• In Java and C++ with virtual inheritance, the class

definition is considered invalid and an error is emitted.

• In C++ with non-virtual inheritance, the ambiguity

resolution is delayed until the method call site, where

the user can upcast the receiver to manually resolve

the ambiguity. See [Wasserrab et al. 2006] for a precise

treatment of inheritance in C++ including a soundness

proof but make sure to prepare a pot of coffee first.

• Several languages like Scala will attempt to determine

a linearization order for the parent classes and use that

to resolve the ambiguity. The C3 linearization algo-
rithm [Barrett et al. 1996] originally defined for Dylan

is especially popular, being notably used by Python

and Raku. This form of linearization is guaranteed to

be monotonic: two classes will always appear in the

same order in any given linearization, this isn’t true

in Scala when traits are involved which lets us define

class hierarchies more freely at the cost of making

linearization harder to reason about.

6.2 Related Calculi
Featherweight Java was first extended with interfaces and

intersection types faithful to Java semantics in FJ&𝜆 [Bettini

et al. 2018]. The semantics of intersection types were then

generalized beyond what Java supports in FJP&𝜆 [Dezani-

Ciancaglini et al. 2019] to allow intersections in any position

(like Scala) and not just as target of casts, finally [Dezani-

Ciancaglini et al. 2020] showed how to erase FJP&𝜆 into

FJ&𝜆. Pathless Scala can be seen as a generalization of FJP&𝜆,

but we found it easier to extend FGJ with traits and intersec-

tions rather than to extend FJP&𝜆 with polymorphism and

generalize its interfaces to traits. However, FJ&𝜆 stripped of

intersections and lambdas makes for a great target calculus

as it closely models most of the important aspects of Java

bytecode, although we would really need to extend it with

overloading to describe Scala’s erasure faithfully.

Featherweight Scala (FS) [Cremet et al. 2006] is not an

extension of Featherweight Java despite its name: it does

have nominal classes (including inner classes) but uses type

members and path-dependent types rather than type pa-

rameters and is therefore more closely related to DOT. FS

also includes multiple inheritance via traits, but it does not

precisely model the overriding rules of Scala like we do in

Section 3.

DOT was first described in [Amin et al. 2012] but wasn’t

proved sound until [Amin et al. 2016], although this version

of DOT lacked union and intersection types. A soundness

proof for DOT with intersections was then presented in

[Rompf and Amin 2016], and unions finally made a comeback

in [Giarrusso et al. 2020]. DOT has also been extended in

multiple ways to bring it closer to Scala [Kabir and Lhoták

2018; Rapoport 2019; Stucki and Giarrusso 2021] but the gap

between the two remains large.

7 Conclusion and Future Work
We have presented Pathless Scala, a convenient calculus for

formalizing the semantics and compilation schemes of parts

of Scala which we found to be understudied. In particular,

we believe its important to specify language features and

their erasure together rather than leaving the latter as an

implementation detail. They inevitably leak to the user (e.g.,

via Java reflection) and interoperability (of Scala 2 code with

Scala 3 code, or of Scala code with Java code) requires the

same type to be erased in the same way by multiple different

compilers. We know from having had to reverse-engineer

how Scala 2 erasure works that this can end up being much

harder than it needs to be. Therefore, we are particularly

interested in extending Pathless Scala to cover other aspects

of Scala with non-trivial erasures such as union types or

polymorphic function types. Eventually, this could serve as

a basis for a more precise version of the Scala Language

Specification [Odersky et al. 2021].

In this work we’ve focused on erasing Scala types into

"bytecode Java" types, but in practice we also need to worry

about erasing Scala types into "source Java" types: the byte-

code format defines a Signature attribute [Lindholm et al.

2015, § 4.7.8] which lets us specify a polymorphic Java

SCALA ’21, October 17, 2021, Chicago, IL, USA Guillaume Martres

method signature that will be ignored by the JVM at run-

time but used by the Java compiler for typechecking, thus

improving the interoperability between Scala and Java It

would be useful to specify an erasure from PS into full

FJ&𝜆 as a way to model this process. The Java compiler

will also use this attribute if it is available to compute the

erased signature it will emit when invoking the method,

therefore we should also define an erasure of FJ&𝜆 into

FJD based on the semantics of Java erasure and verify that

the composition of these two mapping are equivalents to

the erasure mapping of PS into FJD to avoid issues such as

https://github.com/scala/bug/issues/4214.
We did not define evaluation semantics for PS, instead we

described erasure rules to a simpler calculus known to be

sound. For the sake of rigor, it would be good to follow the

FGJ model: give evaluation rules to our calculus indepen-

dent of its erasure, prove soundness, and show that directly

evaluating a PS program is equivalent to erasing and then

evaluating it. Given that our calculus intentionally excludes

the hard parts of DOT, we believe that the existing proofs

given in the FJ paper can be extended in a straight-forward

way to achieve this, but we have not completed this work

yet.

Of course, eventually we should also strive to reconcile

Pathless Scala and DOT, but that is likely to be a much

longer-term project given how difficult it has been to ex-

tend the meta-theory of DOT so far, meanwhile the rest of

Scala awaits us!

References
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro

Stucki. 2016. The Essence of Dependent Object Types. In A List of
Successes That Can Change the World: Essays Dedicated to Philip Wadler
on the Occasion of His 60th Birthday. Springer, Cham, Switzerland, 249–

272. https://doi.org/10.1007/978-3-319-30936-1_14
Nada Amin, Adriaan Moors, and Martin Odersky. 2012. Dependent object

types. In 19th International Workshop on Foundations of Object-Oriented
Languages. Association for Computing Machinery, New York, NY, USA.

Kim Barrett, Bob Cassels, Paul Haahr, David A. Moon, Keith Playford, and

P. Tucker Withington. 1996. A monotonic superclass linearization for

Dylan. In ACM SIGPLAN Notices. Vol. 31. Association for Computing

Machinery, New York, NY, USA, 69–82. https://doi.org/10.1145/236337.
236343

Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, and Betti

Venneri. 2018. Java & Lambda: a Featherweight Story. Logical Methods
in Computer Science Volume 14, Issue 3 (2018). https://doi.org/10.23638/
LMCS-14(3:17)2018 arXiv:1801.05052

Gilad Bracha, Norman Cohen, Christian Kemper, Martin Odersky, David

Stoutamire, Kresten Thorup, and Philip Wadler. 2003. Adding Gener-
ics to the Java Programming Language: Public Draft Specification Ver-
sion 2.0. http://www.javainthebox.net/laboratory/J2SE1.5/LangSpec/
Generics/materials/adding_generics-2_2-ea/spec10.pdf

Cliff Click and John Rose. 2002. Fast subtype checking in the HotSpot JVM.

In JGI ’02: Proceedings of the 2002 joint ACM-ISCOPE conference on Java
Grande. Association for Computing Machinery, New York, NY, USA,

96–107. https://doi.org/10.1145/583810.583821
Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky.

2006. A core calculus for Scala type checking. In International Symposium

on Mathematical Foundations of Computer Science. Springer, 1–23. https:
//doi.org/10.1007/11821069_1

Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri. 2019.

Intersection Types in Java: Back to the Future. InModels, Mindsets, Meta:
TheWhat, the How, and theWhy Not? Essays Dedicated to Bernhard Steffen
on the Occasion of His 60th Birthday. Springer, Cham, Switzerland, 68–86.

https://doi.org/10.1007/978-3-030-22348-9_6
Mariangiola Dezani-Ciancaglini, Paola Giannini, and Betti Venneri. 2020.

Deconfined Intersection Types in Java. In Recent Developments in the
Design and Implementation of Programming Languages (OpenAccess Series
in Informatics (OASIcs), Vol. 86), Frank S. de Boer and Jacopo Mauro (Eds.).

Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

3:1–3:25. https://doi.org/10.4230/OASIcs.Gabbrielli.3
Sébastien Jean R. Doeraene. 2018. Cross-Platform Language Design. Ph.D.

Dissertation. EPFL. https://doi.org/10.5075/epfl-thesis-8733
Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Rob-

bert Krebbers. 2020. Scala step-by-step: soundness for DOT with step-

indexed logical relations in Iris. Proc. ACM Program. Lang. 4, ICFP (Aug

2020), 1–29. https://doi.org/10.1145/3408996
James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. 2015. The Java

Language Specification, Java SE 8 Edition. Oracle. https://docs.oracle.
com/javase/specs/jls/se8/jls8.pdf

Atsushi Igarashi and Benjamin C. Pierce. 2002. On Inner Classes. Inform. And
Comput. 177, 1 (Aug 2002), 56–89. https://doi.org/10.1006/inco.2002.3092

Atsushi Igarashi, Benjamin C. Pierce, and PhilipWadler. 2001. Featherweight

Java: a minimal core calculus for Java and GJ. ACM Trans. Program. Lang.
Syst. 23, 3 (May 2001), 396–450. https://doi.org/10.1145/503502.503505

Ifaz Kabir and Ondřej Lhoták. 2018. 𝜅DOT: scaling DOT with mutation

and constructors. In Scala 2018: Proceedings of the 9th ACM SIGPLAN
International Symposium on Scala. Association for ComputingMachinery,

New York, NY, USA, 40–50. https://doi.org/10.1145/3241653.3241659
Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The

Java Virtual Machine Specification, Java SE 8 Edition. Oracle. https:
//docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf

Martin Odersky et al. 2021. The Scala Language Specification, Scala 2.13
Edition. EPFL. https://www.scala-lang.org/files/archive/spec/2.13/

Martin Odersky and Matthias Zenger. 2005. Scalable component abstrac-

tions. SIGPLAN Not. 40, 10 (Oct 2005), 41–57. https://doi.org/10.1145/
1103845.1094815

Marianna Rapoport. 2019. A Path to DOT: Formalizing Scala with Dependent
Object Types. Ph.D. Dissertation. University of Waterloo. http://hdl.
handle.net/10012/15322

Tiark Rompf and Nada Amin. 2016. Type soundness for dependent object

types (DOT). SIGPLAN Not. 51, 10 (Oct 2016), 624–641. https://doi.org/
10.1145/3022671.2984008

Aleksey Shipilëv. 2020. The Black Magic of (Java) Method Dispatch. https:
//shipilev.net/blog/2015/black-magic-method-dispatch

Sandro Stucki and Paolo G. Giarrusso. 2021. A theory of higher-order

subtyping with type intervals. Proc. ACM Program. Lang. 5, ICFP (Aug

2021), 1–30. https://doi.org/10.1145/3473574
Daniel Wasserrab, Tobias Nipkow, Gregor Snelting, and Frank Tip. 2006.

An operational semantics and type safety proof for multiple inheritance

in C++. SIGPLAN Not. 41, 10 (Oct 2006), 345–362. https://doi.org/10.
1145/1167515.1167503

https://github.com/scala/bug/issues/4214
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/236337.236343
https://doi.org/10.1145/236337.236343
https://doi.org/10.23638/LMCS-14(3:17)2018
https://doi.org/10.23638/LMCS-14(3:17)2018
https://arxiv.org/abs/1801.05052
http://www.javainthebox.net/laboratory/J2SE1.5/LangSpec/Generics/materials/adding_generics-2_2-ea/spec10.pdf
http://www.javainthebox.net/laboratory/J2SE1.5/LangSpec/Generics/materials/adding_generics-2_2-ea/spec10.pdf
https://doi.org/10.1145/583810.583821
https://doi.org/10.1007/11821069_1
https://doi.org/10.1007/11821069_1
https://doi.org/10.1007/978-3-030-22348-9_6
https://doi.org/10.4230/OASIcs.Gabbrielli.3
https://doi.org/10.5075/epfl-thesis-8733
https://doi.org/10.1145/3408996
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://doi.org/10.1006/inco.2002.3092
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/3241653.3241659
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://www.scala-lang.org/files/archive/spec/2.13/
https://doi.org/10.1145/1103845.1094815
https://doi.org/10.1145/1103845.1094815
http://hdl.handle.net/10012/15322
http://hdl.handle.net/10012/15322
https://doi.org/10.1145/3022671.2984008
https://doi.org/10.1145/3022671.2984008
https://shipilev.net/blog/2015/black-magic-method-dispatch
https://shipilev.net/blog/2015/black-magic-method-dispatch
https://doi.org/10.1145/3473574
https://doi.org/10.1145/1167515.1167503
https://doi.org/10.1145/1167515.1167503

	Abstract
	1 Introduction
	2 Syntax
	3 Multiple Inheritance in Scala
	3.1 Lin(N): The Base Types of N in Linearization Order
	3.2 mimpl(m, N): The Implementer of m in N
	3.3 isValid(m, C): The Implementation of m in C Is a Valid Override of All Declarations of m in the Base Types of C

	4 Typing
	4.1 Subtyping and Well-Formedness
	4.2 Typing Expressions
	4.3 Typing Declarations

	5 Erasure
	5.1 Type Erasure
	5.2 Expression Erasure
	5.3 Class Table Erasure

	6 Related Work
	6.1 Multiple Inheritance and the Diamond Problem
	6.2 Related Calculi

	7 Conclusion and Future Work
	References

