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What is a method?

A method is a member of a scope (class, object, ...) declared using def:

def conv(x: Int): String = x.toString
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What is a function?

A value is an instance of a type. The type determines how we can use the value.

In particular, a function value is an instance of a function type, for example:

val f: Int => String = ...

The type Int => String is a short-hand for scala.Function1[Int, String]:

trait Function1[-T, +R]:

def apply(x: T): R

If f is a value, then f(1) expands to f.apply(1)
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What is a lambda?

A lambda is a convenient way to create an instance of a function type:

(x: Int) => x + 1

is equivalent to:

new Function1[Int, Int]:

def apply(x: Int): Int = x + 1

... which itself expands to:

class anon() extends Function1[Int, Int]:

def apply(x: Int): Int = x + 1

new anon()
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Method references

A reference to a method is not a value, but it can be automatically converted into one:

def inc(x: Int) = x + 1

List(1,2,3).map(inc)

This process is called eta-expansion.
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The missing square

Method Function

Monomorphic

def m(x: Int): List[Int] =

List(x)

val f: Int => List[Int] =

x => List(x)

Polymorphic def m[T](x: T): List[T] =

List(x)
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Inventing polymorphic functions

def m[T](x: T): List[T] = List(x)

val f: ... = ... List(x) ...

The type of f needs to have a polymorphic method apply as a member so we can call:

f[Int](1) == List(1)
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Inventing polymorphic functions

def m[T](x: T): List[T] = List(x)

val f: ... = ... List(x) ...

The type of f needs to have a polymorphic method apply as a member so we can call:

f.apply[Int](1) == List(1)
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Manual encoding

trait MkList:

def apply[T](x: T): List[T]

val f: MkList = new MkList:

def apply[T](x: T): List[T] = List(x)

This works, but it requires creating a new trait each time we need a polymorphic function
with different parameters.
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What if we could use a lambda?

def m[T](x: T): List[T] = List[T](x)

val f: T => List[T] =

(x: T) => List[T](x)

f is a polymorphic function value with a polymorphic function type!
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Example usecase

In Scala 3, all tuples extend scala.Tuple which defines:

def map[F[_]](f: [T] => T => F[T]): Map[this.type, F]

val x: (Int, String) = (1, "")

val y: (List[Int], List[String]) =

x.map([T] => (x: T) => List(x))
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The Function Zoo

From Term From Type

To Term val f: Int => Int val f: [T] => T => List[T]

To Type type F[T] = List[T]

type F = [T] =>> List[T]
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How do we implement this?

Source code Desugared form

Int => List[Int] Function1[Int, List[Int]]

[T] => T => List[T]
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First attempt

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

trait PolyFunction1[-Param[_], +Result[_]]:

def apply[T](x: Param[T]): Result[T]

val f = new PolyFunction1[[X] =>> X, List]:

def apply[T](x: T): List[T] = List[T](x)

What if we want to bound T? E.g. [T <: AnyRef] => T => List[T]
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Getting complicated!

trait PolyFunction1[

-Bound[_],

-Param[x <: Bound[x]],

+Result[x <: Bound[x]]

]:

def apply[T <: Bound[T]](x: Param[T]): Result[T]

What about multiple type parameters? Multiple term parameters?
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Taking a step back

Can we use structural typing to avoid having to define all these traits?

val s: scala.Selectable { def foo(): Int } = ...

val x: Int = s.foo()
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Putting it all together

Source code Desugared form

Int => List[Int] Function1[Int, List[Int]]

[T] => T => List[T]
scala.PolyFunction {

def apply[T](x: T): List[T]

}

scala.PolyFunction is an empty trait which is allowed to have a polymorphic apply
refinement.
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Type erasure (1/2)

When compiling to Java bytecode, we need to erase type parameters:

// Scala

trait Function1[-T, +R]:

def apply(x: T): R

val f: String => List[String] = …

f("").head

// Java bytecode

interface Function1:

def apply(x: Object): Object

val f: Function1 = …

f.apply("").asInstanceOf[List]

.head.asInstanceOf[String]
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Type erasure (2/2)

val g: [T] => (x: T) => List[T] =

[T] => (x: T) => List(x)

g[String]("").head

We could use any compilation scheme we want, but if we want to be efficient, we need a
class with an apply method!

val g: Function1 =

(x: Object) => List.apply(x)

g.apply("").asInstanceOf[List].head.asInstanceOf[String]

We erase a polymorphic function with N term arguments like a monomorphic function
with N term arguments.
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Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean
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def lessOrEqual(x: A, y: A): Boolean

given Order[Int] with

def lessOrEqual(x: Int, y: Int) = x <= y
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def lessOrEqual(x: String, y: String) = x <= y
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Example 2: Preserving type information

import scala.compiletime.ops.int.*

enum SList:

case SNil

extends SList[0]

case SCons(head: String, tail: SList)

def foldRight[B](z: B)(op: (String, B) => B): B = ...

def foldRightN[B[_ <: Int]](z: B[0])

(op: [M <: Int] => (String, B[M]) => B[M+1]): B[N] = ...

def appended(elem: Int): SList =

val newTail: SList = SCons(elem, SNil)

foldRight(newTail)(SCons(_, _))
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Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f:

Any => A

): A

def test[A](a: A)(using Base[A]) =

a.base
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Example 3: Encapsulation

This technique is used in cats-effect to keep Async#cont safe, see
https://typelevel.org/cats-effect/docs/typeclasses/async.
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Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process.

Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35
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Idea 1: Polymorphic eta-expansion (2/2)

Adapt polymorphic method references by eta-expansion:

def singleton[T](x: T): List[T] = List(x)

(1, "").map(singleton)
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What about regular lambdas?

If we only adapt method references, this will work:

(1, "").map(List.apply)

... but this won’t work:

(1, "").map(List(_))

(1, "").map(_.toString)
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Idea 2: type parameter clause inference

Instead, we could adapt regular lambdas into polymorphic lambdas by type parameter
clause inference combined with the usual type inference.

val f: [T] => T => String =

[T] =>

x => x.toString

32/35



Idea 2: type parameter clause inference

Instead, we could adapt regular lambdas into polymorphic lambdas by type parameter
clause inference combined with the usual type inference.

val f: [T] => T => String =

[T] => x => x.toString

32/35



Idea 2: type parameter clause inference

Instead, we could adapt regular lambdas into polymorphic lambdas by type parameter
clause inference combined with the usual type inference.

val f: [T] => T => String =

[T] => (x: T) => x.toString

32/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

singleton

val g: [T, S] => (T, S) => List[(T, S)] =

singleton
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Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

[T] => (x: T) => singleton[T](x)

val g: [T, S] => (T, S) => List[(T, S)] =

[T, S] => (x: (T, S)) => singleton[(T, S)](x)
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Idea 3: Better subtyping

For regular function types:

Any => Int <: Any =>

Any

Any => Int <:

Int

=> Int

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>
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Thank you!

Come to the Scala Spree this Friday! https://github.com/scalacenter/sprees

Resources:

• Slides for this talk: http://guillaume.martres.me/talks/scaladays23-madrid.pdf

• Scala 3 Compiler Academy on Youtube.

• #scala-contributors on the Scala Discord.
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