
Polymorphic Function Types 
in Scala 3

Guillaume Martres
Arteris IP    /   Scala Center



About me

• 2016-2022: PhD at EPFL

• 2022-2023: Scala Center

• Since last week: Arteris IP + 20% time with the Scala Center

• Arteris develops interconnects for System-on-Chips.

• Hiring Scala engineers (in Nice, France) to research Domain Specific Languages for
hardware design!

1/35



Table of Contents

1. Methods versus Functions

2. Handling polymorphism

3. Compiler Implementation

4. Detailed Examples

5. The (Possible) Future

2/35



Table of Contents

1. Methods versus Functions

2. Handling polymorphism

3. Compiler Implementation

4. Detailed Examples

5. The (Possible) Future

3/35



What is a method?

A method is a member of a scope (class, object, ...) declared using def:

def conv(x: Int): String = x.toString

4/35



What is a function?

A value is an instance of a type. The type determines how we can use the value.

In particular, a function value is an instance of a function type, for example:

val f: Int => String = ...

The type Int => String is a short-hand for scala.Function1[Int, String]:

trait Function1[-T, +R]:

def apply(x: T): R

If f is a value, then f(1) expands to f.apply(1)

5/35



What is a function?

A value is an instance of a type. The type determines how we can use the value.

In particular, a function value is an instance of a function type, for example:

val f: Int => String = ...

The type Int => String is a short-hand for scala.Function1[Int, String]:

trait Function1[-T, +R]:

def apply(x: T): R

If f is a value, then f(1) expands to f.apply(1)

5/35



What is a function?

A value is an instance of a type. The type determines how we can use the value.

In particular, a function value is an instance of a function type, for example:

val f: Int => String = ...

The type Int => String is a short-hand for scala.Function1[Int, String]:

trait Function1[-T, +R]:

def apply(x: T): R

If f is a value, then f(1) expands to f.apply(1)

5/35



What is a function?

A value is an instance of a type. The type determines how we can use the value.

In particular, a function value is an instance of a function type, for example:

val f: Int => String = ...

The type Int => String is a short-hand for scala.Function1[Int, String]:

trait Function1[-T, +R]:

def apply(x: T): R

If f is a value, then f(1) expands to f.apply(1)

5/35



What is a lambda?

A lambda is a convenient way to create an instance of a function type:

(x: Int) => x + 1

is equivalent to:

new Function1[Int, Int]:

def apply(x: Int): Int = x + 1

... which itself expands to:

class anon() extends Function1[Int, Int]:

def apply(x: Int): Int = x + 1

new anon()

6/35



What is a lambda?

A lambda is a convenient way to create an instance of a function type:

(x: Int) => x + 1

is equivalent to:

new Function1[Int, Int]:

def apply(x: Int): Int = x + 1

... which itself expands to:

class anon() extends Function1[Int, Int]:

def apply(x: Int): Int = x + 1

new anon() 6/35



Method references

A reference to a method is not a value, but it can be automatically converted into one:

def inc(x: Int) = x + 1

List(1,2,3).map(inc)

This process is called eta-expansion.

7/35



Method references

A reference to a method is not a value, but it can be automatically converted into one:

def inc(x: Int) = x + 1

List(1,2,3).map(x => inc(x))

This process is called eta-expansion.

7/35



Method references

A reference to a method is not a value, but it can be automatically converted into one:

def inc(x: Int) = x + 1

List(1,2,3).map(x => inc(x))

This process is called eta-expansion.

7/35



Table of Contents

1. Methods versus Functions

2. Handling polymorphism

3. Compiler Implementation

4. Detailed Examples

5. The (Possible) Future

8/35



The missing square

Method Function

Monomorphic

def m(x: Int): List[Int] =

List(x)

val f: Int => List[Int] =

x => List(x)

Polymorphic def m[T](x: T): List[T] =

List(x)

9/35



The missing square

Method Function

Monomorphic def m(x: Int): List[Int] =

List(x)

val f: Int => List[Int] =

x => List(x)

Polymorphic def m[T](x: T): List[T] =

List(x)

9/35



The missing square

Method Function

Monomorphic def m(x: Int): List[Int] =

List(x)

val f: Int => List[Int] =

x => List(x)

Polymorphic def m[T](x: T): List[T] =

List(x)

9/35



Inventing polymorphic functions

def m[T](x: T): List[T] = List(x)

val f: ... = ... List(x) ...

The type of f needs to have a polymorphic method apply as a member so we can call:

f[Int](1) == List(1)

10/35



Inventing polymorphic functions

def m[T](x: T): List[T] = List(x)

val f: ... = ... List(x) ...

The type of f needs to have a polymorphic method apply as a member so we can call:

f[Int](1) == List(1)

10/35



Inventing polymorphic functions

def m[T](x: T): List[T] = List(x)

val f: ... = ... List(x) ...

The type of f needs to have a polymorphic method apply as a member so we can call:

f[Int](1) == List(1)

10/35



Inventing polymorphic functions

def m[T](x: T): List[T] = List(x)

val f: ... = ... List(x) ...

The type of f needs to have a polymorphic method apply as a member so we can call:

f.apply[Int](1) == List(1)

10/35



Manual encoding

trait MkList:

def apply[T](x: T): List[T]

val f: MkList = new MkList:

def apply[T](x: T): List[T] = List(x)

This works, but it requires creating a new trait each time we need a polymorphic function
with different parameters.

11/35



What if we could use a lambda?

def m[T](x: T): List[T] = List[T](x)

val f: T => List[T] =

(x: T) => List[T](x)

f is a polymorphic function value with a polymorphic function type!

12/35



What if we could use a lambda?

def m[T](x: T): List[T] = List[T](x)

val f: T => List[T] =

(x: T) => List[T](x)

f is a polymorphic function value with a polymorphic function type!

12/35



What if we could use a lambda?

def m[T](x: T): List[T] = List[T](x)

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

f is a polymorphic function value with a polymorphic function type!

12/35



What if we could use a lambda?

def m[T](x: T): List[T] = List[T](x)

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

f is a polymorphic function value with a polymorphic function type!

12/35



Example usecase

In Scala 3, all tuples extend scala.Tuple which defines:

def map[F[_]](f: [T] => T => F[T]): Map[this.type, F]

val x: (Int, String) = (1, "")

val y: (List[Int], List[String]) =

x.map([T] => (x: T) => List(x))

13/35



Example usecase

In Scala 3, all tuples extend scala.Tuple which defines:

def map[F[_]](f: [T] => T => F[T]): Map[this.type, F]

val x: (Int, String) = (1, "")

val y: (List[Int], List[String]) =

x.map([T] => (x: T) => List(x))

13/35



The Function Zoo

From Term From Type

To Term val f: Int => Int val f: [T] => T => List[T]

To Type type F[T] = List[T]

type F = [T] =>> List[T]

14/35



The Function Zoo

From Term From Type

To Term val f: Int => Int val f: [T] => T => List[T]

To Type type F[T] = List[T]

type F = [T] =>> List[T]

14/35



The Function Zoo

From Term From Type

To Term val f: Int => Int val f: [T] => T => List[T]

To Type type F[T] = List[T]

type F = [T] =>> List[T]

14/35



Table of Contents

1. Methods versus Functions

2. Handling polymorphism

3. Compiler Implementation

4. Detailed Examples

5. The (Possible) Future

15/35



How do we implement this?

Source code Desugared form

Int => List[Int] Function1[Int, List[Int]]

[T] => T => List[T]

16/35



First attempt

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

trait PolyFunction1[-Param[_], +Result[_]]:

def apply[T](x: Param[T]): Result[T]

val f = new PolyFunction1[[X] =>> X, List]:

def apply[T](x: T): List[T] = List[T](x)

What if we want to bound T? E.g. [T <: AnyRef] => T => List[T]

17/35



First attempt

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

trait PolyFunction1[-Param[_], +Result[_]]:

def apply[T](x: Param[T]): Result[T]

val f = new PolyFunction1[[X] =>> X, List]:

def apply[T](x: T): List[T] = List[T](x)

What if we want to bound T? E.g. [T <: AnyRef] => T => List[T]

17/35



First attempt

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

trait PolyFunction1[-Param[_], +Result[_]]:

def apply[T](x: Param[T]): Result[T]

val f = new PolyFunction1[[X] =>> X, List]:

def apply[T](x: T): List[T] = List[T](x)

What if we want to bound T?

E.g. [T <: AnyRef] => T => List[T]

17/35



First attempt

val f: [T] => T => List[T] =

[T] => (x: T) => List[T](x)

trait PolyFunction1[-Param[_], +Result[_]]:

def apply[T](x: Param[T]): Result[T]

val f = new PolyFunction1[[X] =>> X, List]:

def apply[T](x: T): List[T] = List[T](x)

What if we want to bound T? E.g. [T <: AnyRef] => T => List[T]

17/35



Getting complicated!

trait PolyFunction1[

-Bound[_],

-Param[x <: Bound[x]],

+Result[x <: Bound[x]]

]:

def apply[T <: Bound[T]](x: Param[T]): Result[T]

What about multiple type parameters? Multiple term parameters?

18/35



Getting complicated!

trait PolyFunction1[

-Bound[_],

-Param[x <: Bound[x]],

+Result[x <: Bound[x]]

]:

def apply[T <: Bound[T]](x: Param[T]): Result[T]

What about multiple type parameters? Multiple term parameters?

18/35



Taking a step back

Can we use structural typing to avoid having to define all these traits?

val s: scala.Selectable { def foo(): Int } = ...

val x: Int = s.foo()

19/35



Taking a step back

Can we use structural typing to avoid having to define all these traits?

val s: scala.Selectable { def foo(): Int } = ...

val x: Int = s.foo()

19/35



Putting it all together

Source code Desugared form

Int => List[Int] Function1[Int, List[Int]]

[T] => T => List[T]
scala.PolyFunction {

def apply[T](x: T): List[T]

}

scala.PolyFunction is an empty trait which is allowed to have a polymorphic apply
refinement.

20/35



Putting it all together

Source code Desugared form

Int => List[Int] Function1[Int, List[Int]]

[T <: Int] => T => List[T]
scala.PolyFunction {

def apply[T <: Int](x: T): List[T]

}

scala.PolyFunction is an empty trait which is allowed to have a polymorphic apply
refinement.

20/35



Type erasure (1/2)

When compiling to Java bytecode, we need to erase type parameters:

// Scala

trait Function1[-T, +R]:

def apply(x: T): R

val f: String => List[String] = …

f("").head

// Java bytecode

interface Function1:

def apply(x: Object): Object

val f: Function1 = …

f.apply("").asInstanceOf[List]

.head.asInstanceOf[String]

21/35



Type erasure (2/2)

val g: [T] => (x: T) => List[T] =

[T] => (x: T) => List(x)

g[String]("").head

We could use any compilation scheme we want, but if we want to be efficient, we need a
class with an apply method!

val g: Function1 =

(x: Object) => List.apply(x)

g.apply("").asInstanceOf[List].head.asInstanceOf[String]

We erase a polymorphic function with N term arguments like a monomorphic function
with N term arguments.

22/35



Type erasure (2/2)

val g: [T] => (x: T) => List[T] =

[T] => (x: T) => List(x)

g[String]("").head

We could use any compilation scheme we want, but if we want to be efficient, we need a
class with an apply method!

val g: Function1 =

(x: Object) => List.apply(x)

g.apply("").asInstanceOf[List].head.asInstanceOf[String]

We erase a polymorphic function with N term arguments like a monomorphic function
with N term arguments.

22/35



Type erasure (2/2)

val g: [T] => (x: T) => List[T] =

[T] => (x: T) => List(x)

g[String]("").head

We could use any compilation scheme we want, but if we want to be efficient, we need a
class with an apply method!

val g: Function1 =

(x: Object) => List.apply(x)

g.apply("").asInstanceOf[List].head.asInstanceOf[String]

We erase a polymorphic function with N term arguments like a monomorphic function
with N term arguments. 22/35



Table of Contents

1. Methods versus Functions

2. Handling polymorphism

3. Compiler Implementation

4. Detailed Examples

5. The (Possible) Future

23/35



Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean

24/35



Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean

given Order[Int] with

def lessOrEqual(x: Int, y: Int) = x <= y

given Order[String] with

def lessOrEqual(x: String, y: String) = x <= y

24/35



Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean

case class Foo(a: Int, b: String)

given Order[Foo] with

def lessOrEqual(x: Foo, y: Foo) =

summon[Order[Int]].lessOrEqual(x.a, y.a)

&& summon[Order[String]].lessOrEqual(x.b, y.b)

[T] => (acc: Boolean, order: Order[T], x1: T, y1: T) =>

acc && order.lessOrEqual(x1, y1)

)

24/35



Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean

case class Foo(a: Int, b: String)

given Order[Foo] with

def lessOrEqual(x: Foo, y: Foo) =

summon[Order[Int]].lessOrEqual(x.a, y.a)

&& summon[Order[String]].lessOrEqual(x.b, y.b)

[T] => (acc: Boolean, order: Order[T], x1: T, y1: T) =>

acc && order.lessOrEqual(x1, y1)

)

24/35



Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean

case class Foo(a: Int, b: String)

given Order[Foo] with

def lessOrEqual(x: Foo, y: Foo) =

val inst = summon[ProductInstances[Order, Foo]]

inst.foldLeft2(x, y)(true)(

[T] => (acc: Boolean, order: Order[T], x1: T, y1: T) =>

acc && order.lessOrEqual(x1, y1)

) 24/35



Example 1: Generic programming

trait Order[A]:

def lessOrEqual(x: A, y: A): Boolean

case class Foo(a: Int, b: String)

given Order[Foo] with

def lessOrEqual(x: Foo, y: Foo) =

val inst = summon[ProductInstances[Order, Foo]]

inst.foldLeft2(x, y)(true)(

[T] => (acc: Boolean, order: Order[T], x1: T, y1: T) =>

acc && order.lessOrEqual(x1, y1)

) 24/35



Example 2: Preserving type information

import scala.compiletime.ops.int.*

enum SList:

case SNil

extends SList[0]

case SCons(head: String, tail: SList)

def foldRight[B](z: B)(op: (String, B) => B): B = ...

def foldRightN[B[_ <: Int]](z: B[0])

(op: [M <: Int] => (String, B[M]) => B[M+1]): B[N] = ...

def appended(elem: Int): SList =

val newTail: SList = SCons(elem, SNil)

foldRight(newTail)(SCons(_, _))

25/35



Example 2: Preserving type information

import scala.compiletime.ops.int.*

enum SList:

case SNil

extends SList[0]

case SCons(head: String, tail: SList)

def foldRight[B](z: B)(op: (String, B) => B): B = ...

def foldRightN[B[_ <: Int]](z: B[0])

(op: [M <: Int] => (String, B[M]) => B[M+1]): B[N] = ...

def appended(elem: Int): SList =

val newTail: SList = SCons(elem, SNil)

foldRight(newTail)(SCons(_, _))

25/35



Example 2: Preserving type information

import scala.compiletime.ops.int.*

enum SList[N <: Int]:

case SNil extends SList[0]

case SCons[M <: Int](head: String, tail: SList[M]) extends SList[M+1]

def foldRight[B](z: B)(op: (String, B) => B): B = ...

def foldRightN[B[_ <: Int]](z: B[0])

(op: [M <: Int] => (String, B[M]) => B[M+1]): B[N] = ...

def appended(elem: Int): SList[N+1] =

val newTail: SList[1] = SCons(elem, SNil)

foldRight(
⁓⁓⁓⁓⁓⁓⁓⁓
newTail)(SCons(_, _))

25/35



Example 2: Preserving type information

import scala.compiletime.ops.int.*

enum SList[N <: Int]:

case SNil extends SList[0]

case SCons[M <: Int](head: String, tail: SList[M]) extends SList[M+1]

def foldRight[B](z: B)(op: (String, B) => B): B = ...

def foldRightN[B[_ <: Int]](z: B[0])

(op: [M <: Int] => (String, B[M]) => B[M+1]): B[N] = ...

def appended(elem: Int): SList[N+1] =

val newTail: SList[1] = SCons(elem, SNil)

foldRightN[[X] =>> SList[X+1]](newTail)( [M <: Int] => SCons(_, _))

25/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f:

Any => A

): A

def test[A](a: A)(using Base[A]) =

a.base

26/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f:

Any => A

): A

def test[A](a: A)(using d: Derived[A]) =

d.compute(a => a.dangerous)

26/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f:

Any => A

): A

def test[A](a: A)(using d: Derived[A]) =

d.compute(a => a.dangerous)

26/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f: Any => A): A

def test[A](a: A)(using d: Derived[A]) =

d.compute(a => a.dangerous)

26/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f: [T] => T => T): A

def test[A](a: A)(using d: Derived[A]) =

d.compute(a => a.dangerous)

26/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f: [T] => T => T): A

def test[A](a: A)(using d: Derived[A]) =

d.compute(a => a.dangerous)

d.computeSafe(a => a.base)

26/35



Example 3: Encapsulation

trait Base[A]:

extension (x: A) def base: A

trait Derived[A] extends Base[A]:

extension (x: A) def dangerous: A

/** `f` is allowed to call `base`

* but not `dangerous` on its input. */

def compute(f: A => A): A

def computeSafe(f: [T] => T => Base[T] ?=> T): A

def test[A](a: A)(using d: Derived[A]) =

d.compute(a => a.dangerous)

d.computeSafe(a => a.base)

26/35



Example 3: Encapsulation

This technique is used in cats-effect to keep Async#cont safe, see
https://typelevel.org/cats-effect/docs/typeclasses/async.

27/35

https://typelevel.org/cats-effect/docs/typeclasses/async


Table of Contents

1. Methods versus Functions

2. Handling polymorphism

3. Compiler Implementation

4. Detailed Examples

5. The (Possible) Future

28/35



Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process.

Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.

29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (1/2)

SIP-49: Polymorphic Eta-Expansion (by Quentin Bernet)

SIP stands for Scala Improvement Process. Roughly, the process is:

1. Have an idea!

2. Discuss it on contributors.scala-lang.org

3. Write a SIP proposal with a formal specification.

4. The SIP committee members vote on accepting it as experimental.

5. Implement the SIP in the compiler as experimental, gather feedback.

6. The SIP committee members vote on accepting it as stable.

7. The feature is marked as stable in the compiler.
29/35

https://github.com/scala/improvement-proposals/blob/main/content/polymorphic-eta-expansion.md
contributors.scala-lang.org


Idea 1: Polymorphic eta-expansion (2/2)

Adapt polymorphic method references by eta-expansion:

def singleton[T](x: T): List[T] = List(x)

(1, "").map(singleton)

30/35



Idea 1: Polymorphic eta-expansion (2/2)

Adapt polymorphic method references by eta-expansion:

def singleton[T](x: T): List[T] = List(x)

(1, "").map([T] => (x: T) => singleton[T](x))

30/35



What about regular lambdas?

If we only adapt method references, this will work:

(1, "").map(List.apply)

... but this won’t work:

(1, "").map(List(_))

(1, "").map(_.toString)

31/35



What about regular lambdas?

If we only adapt method references, this will work:

(1, "").map(List.apply)

... but this won’t work:

(1, "").map(List(_))

(1, "").map(_.toString)

31/35



Idea 2: type parameter clause inference

Instead, we could adapt regular lambdas into polymorphic lambdas by type parameter
clause inference combined with the usual type inference.

val f: [T] => T => String =

[T] =>

x => x.toString

32/35



Idea 2: type parameter clause inference

Instead, we could adapt regular lambdas into polymorphic lambdas by type parameter
clause inference combined with the usual type inference.

val f: [T] => T => String =

[T] => x => x.toString

32/35



Idea 2: type parameter clause inference

Instead, we could adapt regular lambdas into polymorphic lambdas by type parameter
clause inference combined with the usual type inference.

val f: [T] => T => String =

[T] => (x: T) => x.toString

32/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

singleton

val g: [T, S] => (T, S) => List[(T, S)] =

singleton

33/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

x => singleton(x)

val g: [T, S] => (T, S) => List[(T, S)] =

singleton

33/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

[T] => x => singleton(x)

val g: [T, S] => (T, S) => List[(T, S)] =

singleton

33/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

[T] => (x: T) => singleton(x)

val g: [T, S] => (T, S) => List[(T, S)] =

singleton

33/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

[T] => (x: T) => singleton[T](x)

val g: [T, S] => (T, S) => List[(T, S)] =

singleton

33/35



Idea 2: type parameter clause inference

Regular eta-expansion can also be combined with type parameter clause inference and
type inference.

def singleton[T](x: T): List[T] = List(x)

val f: [T] => T => List[T] =

[T] => (x: T) => singleton[T](x)

val g: [T, S] => (T, S) => List[(T, S)] =

[T, S] => (x: (T, S)) => singleton[(T, S)](x)

33/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any =>

Any

Any => Int <:

Int

=> Int

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <:

Int

=> Int

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <:

Int

=> Int

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => =>

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => => Any

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: ] => List[T] => Any

34/35



Idea 3: Better subtyping

For regular function types:

Any => Int <: Any => Any

Result is covariant

Any => Int <: Int => Int

Parameters are contravariant

For polymorphic function types everything is invariant currently, but ideally:

[T <: Any ] => Seq[T] => Option[T] <: [T <: Int ] => List[T] => Any

34/35



Thank you!

Come to the Scala Spree this Friday! https://github.com/scalacenter/sprees

Resources:

• Slides for this talk: http://guillaume.martres.me/talks/scaladays23-madrid.pdf

• Scala 3 Compiler Academy on Youtube.

• #scala-contributors on the Scala Discord.

35/35

https://github.com/scalacenter/sprees
http://guillaume.martres.me/talks/scaladays23-madrid.pdf
https://www.youtube.com/channel/UCIH0OgqE54-KEvYDg4LRhKQ
https://discord.gg/scala

	Methods versus Functions
	Handling polymorphism
	Compiler Implementation
	Detailed Examples
	The (Possible) Future

