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Abstract
The Dependent Object Type (DOT) calculus was designed to put Scala on a sound basis, but
while DOT relies on structural subtyping, Scala is a fundamentally class-based language. This
impedance mismatch means that a proof of DOT soundness by itself is not enough to declare a
particular subset of the language as sound. While a few examples of Scala snippets have been
manually translated into DOT, no systematic compilation scheme has been presented so far.

In this thesis we develop a series of calculi of increasing complexity to model Scala and present
a type-preserving compilation scheme from each of these calculus into DOT. Along the way,
we develop some necessary extensions to DOT.
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Résumé
Le calcul “Dependent Object Types” (DOT) a été conçu pour garantir la sûreté du typage de
Scala. Mais alors que DOT se fonde sur le sous-typage structurel, Scala est un langage construit
sur un système de classes. Dès lors, on ne peut conclure qu’un sous-ensemble particulier de
Scala est sûr uniquement parce que DOT lui-même l’est. Même si quelques exemples de code
Scala ont été manuellement traduits en DOT, aucun schéma de compilation systématique n’a
été présenté jusqu’ici.

Dans cette thèse, nous développons une série de calculs de complexité croissante afin de
modéliser Scala, et nous présentons pour chacun un schéma de compilation vers DOT préservant
le typage. En chemin, nous developpons certaines extensions nécessaires à DOT.
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Mathematical conventions
In this preliminary chapter, we briefly describe some of the notations of the meta-language we
will use in the rest of this thesis to describe and analyze calculi.

As usual, terms and types that are equal up to renaming of bound variables are identified.

We write 𝑓 (𝑎) ≔ 𝑏 to mean that 𝑓 is defined to map 𝑎 to 𝑏.

We write dom(𝑓 ) for the domain of a function 𝑓 .

We write fv(𝑇 ) for the set of free variables appearing in 𝑇 .

We write _ to denote a fresh variable we never refer to.

A list 𝑋1, ... , 𝑋𝑛 (abbreviated 𝑋 ) is a possibly-empty ordered sequence of elements. We denote
the empty list by ∅, like the empty set. The list 𝑋, 𝑌 is the concatenation of 𝑋 and 𝑌 .

A substitution [𝑇1/𝑋1, ... , 𝑇𝑛/𝑋𝑛] (abbreviated [𝑇 /𝑋 ]) simultaneously replaces every free oc-
curence of𝑋𝑖 by𝑇𝑖 in the expression that appears to its right. For example, [𝑇 /𝑋 ]𝑋 is equivalent
to 𝑇 . A substitution can be viewed as a partial function and so we define dom( [𝑇 /𝑋 ]) ≔ 𝑋 .

By analogy with the usual set-builder notation
{︁
𝑝 ∈ P

|︁|︁ Φ(𝑝)}︁ we define a list-builder notation[︁
𝑝 ∈ 𝑃

|︁|︁ Φ(𝑝)]︁ which preserves the order of the elements in the input list.

For convenience, we overload the usual intersection and union operators to also be defined on
lists:

𝑃 ∪𝑄 ≔ 𝑃,
[︁
𝑞 ∈ 𝑄

|︁|︁ 𝑞 ∉ 𝑃
]︁

𝑃 ∩𝑄 ≔
[︁
𝑝 ∈ 𝑃

|︁|︁ 𝑝 ∈ 𝑄
]︁

For every syntactical element ★ such that 𝑋1 ★ ... ★𝑋𝑛 is valid syntax, we implicitly define a
“big operator”⋆ such that⋆𝑋 ≔ 𝑋1 ★ ...★𝑋𝑛 .

The overline notation can be used with arbitrary syntax fragments. For example 𝑥1 :𝑇1, ... ,𝑥𝑛 :𝑇𝑛
can be abbreviated as 𝑥 : 𝑇 . Note that a meta-variable might be defined outside of an overlined
expression but used in such an expression which will affect its expansion.2 For example the

2This is markedly different from [Igarashi, Pierce, and Wadler 2001] (which inspired most of our notations)
where 𝑋 and 𝑋 may appear in the same context but will refer to different variables.

1



Mathematical notation

sentence,

Let 𝜎 = [𝑇 /𝑋 ] and 𝑡 = 𝑥 : 𝜎𝑈 .

expands to

Let 𝜎 = [𝑇1/𝑋1, ... , 𝑇𝑛/𝑋𝑛] and 𝑡 = 𝑥1 : 𝜎𝑈1, ... , 𝑥𝑚 : 𝜎𝑈𝑚 .

Overlines can be nested, although we do our best to avoid using that power for the sake of
the reader. When this happens, the overlines should be expanded outside-in (because the lists
represented by an inner overline might be of different lengths). For example,

𝐴 = 𝑋 <: 𝑁

expands to

(𝐴1 = 𝑋1 <: 𝑁1), ... , (𝐴𝑛 = 𝑋𝑛 <: 𝑁𝑛)
which itself expands to

(𝐴1 = 𝑋11
<: 𝑁11

, ... , 𝑋1𝑚
<: 𝑁1𝑚

),
... ,

(𝐴𝑛 = 𝑋𝑛1
<: 𝑁𝑛1

, ... , 𝑋𝑛𝑧
<: 𝑁𝑛𝑧

)

When multiple judgments are entailed by the same context like Γ ⊢ 𝑋 <: 𝑁 and Γ ⊢ 𝑥 : 𝑇 , we
may “factor out” the entailement part and write Γ ⊢ 𝑋 <: 𝑁, 𝑥 : 𝑇 instead. This can be combined
with the overline notation: we write Γ ⊢ 𝑌 <: 𝑃 to mean Γ ⊢ 𝑌1 <: 𝑃1, ... , 𝑌𝑛 <: 𝑃𝑛 .

With “postfix judgments” such as Γ ⊢ 𝑇 wf, we allow Γ ⊢ 𝑇, 𝑆 wf to stand for Γ ⊢ 𝑇 wf, 𝑆 wf, this
can also be combined with the overline notation: we write Γ ⊢ 𝑇 wf to mean Γ ⊢ 𝑇1, ... , 𝑇𝑛 wf

In a context where Γ ⊢ 𝑇 <: 𝑆 is a subtyping judgment, we write Γ ⊢ 𝑇 =:= 𝑆 as a short-hand
for Γ ⊢ 𝑇 <: 𝑆, 𝑆 <: 𝑇 .

In proofs, we abbreviate “induction hypothesis” to “IH”.

2



1 Introduction

1.1 Background
How can we reason about the behavior of our programs without running them first? Assuming
our language of choice has a static type system, a type theorist might answer with the following
very broad recipe:

1. Write down the rules that determine which programs are well-typed in our language.

2. Write down the rules that determine how a program is evaluated.

3. Prove that all well-typed programs will behave in a particular way when evaluated.

But modern programming languages are fiendishly complex, so much so that step 1 by itself
might already prove too arduous unless the language has already been carefully specified. Even
if we manage to exhaustively specify the static and operational semantics of our language, the
sheer number of rules involved will likely make any interesting property too hard to prove in a
reasonable amount of time. This is compounded by the fact that languages keep evolving, and
what we can prove about any particular version of it might not hold for the next.

As exemplified by Featherweight Java [Igarashi, Pierce, and Wadler 2001], the pragmatic
approach in this situation has been to formally specify only a tractable subset of the original
language which is then carefully studied, while reasoning informally about other parts of the
language.

This has been very successful in practice but the downside is that important properties estab-
lished in our core language might not in fact hold in practice due to under-studied interactions
with other parts of the language such as null in Java [Amin and Tate 2016].

Another possible way to tame complexity is to design a simpler language that can serve as
a compilation target for our source language. Assuming well-typed programs in our source
language are translated into well-typed programs of the target language, then results we prove
about well-typed programs in the target language also apply to programs in our source language.

This technique was pioneered by the GHC Haskell compiler using System 𝐹𝐶 [Sulzmann et al.

3



Chapter 1. Introduction

2007] as an intermediate representation. It isn’t completely without pitfalls either:

1. The operational semantics of a program in our source language is now determined by
the operational semantics of its translation. If the translation procedure itself is complex,
we’ll have a hard time figuring out how our program will be executed.

2. The translation might in fact not always produce well-typed programs in the target
language. To guard against this, GHC can re-typecheck the translated program as a
consistency check. If it turns out not to be well-typed, then it can stop and report to the
user that a compiler bug has been found.

1.2 Reasoning about Scala
The Dependent Object Types (DOT) calculus [Amin, Grütter, et al. 2016; Rompf and Amin 2016]
was designed as a compilation target for Scala. But unlike System 𝐹𝐶 , DOT isn’t meant to be a
practical intermediate language: Scala’s primary backend is Java bytecode which can be seen
as a simple class-based language. Using a class-less language such as DOT as an intermediate
step when compiling to Java bytecode would be counter-productive both for performance and
interoperability with other languages on the JVM as too much of the program structure would
be lost.1

Instead, DOT should be seen as a theoretical framework for reasoning about Scala. In that
respect, it has been very successful: type system features first developed in DOT such as
intersection types and union types were added to the language, and type soundness holes in
the language were patched based on ideas developed in DOT.

But still, we can’t help but have a nagging feeling that something is missing here: can we
actually compile Scala to DOT? In fact, we know that some Scala features such as higher-kinded
types are not encodable in DOT [Odersky, Martres, and Petrashko 2016; Stucki and Giarrusso
2021]. So at most we may be able to compile a subset of valid Scala programs into DOT, but it
isn’t clear what that subset would be.

Even if we were to write down a compilation scheme from a subset of Scala into DOT, how would
we know whether it is actually correct? Unlike with System 𝐹𝐶 , there is no known practical
algorithm for typechecking DOT [Nieto 2017], so we cannot simply check that our translation
is correct in practice. This leaves us with only one clear path ahead: given a particular subset of
Scala, we need to prove that well-typed programs in it can always be compiled into well-typed
DOT programs. In other words, we need to develop a type-preserving compilation scheme. This
is the approach we choose to pursue in this thesis.

1.3 Thesis organization
We begin our journey with a whirlwind tour of the DOT calculus family in Chapter 2. After
settling on oopslaDOT [Rompf and Amin 2016] as our target calculus of choice, we present a

1Even alternative backends such as Scala.js implement JVM-like operational semantics to ease cross-platform
development [Doeraene 2018, § 2.1].
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1.3 Thesis organization

series of calculi of increasing complexity, each accompanied by a type-preserving compilation
proof, as summarized in Figure 1.1.

Figure 1.1: Thesis organization

Chapter 3

Chapter 4

Chapter 5

Chapter 7

Chapter 6

oopslaDOT
(Chapter 2)

Featherweight Java

oopslaDOT + And-BindFeatherweight Generic Java

... + And-I’

Pathless Scala

Dependent Scala

Pathless Lattice Scala

𝐴 → 𝐵 means “A is a fragment of B”

𝐴 ⇒ 𝐵 means “A is translatable into B”

Chapter 3 reviews Featherweight Java which conveniently happens to already be isomorphic
to a subset of Scala. We make this correpondance explicit by swapping the original syntax of
Featherweight Java for a more Scala-like syntax.

In Chapter 4, we apply the same treatment to Featherweight Generic Java, an extension of
Featherweight Java with type parameters. This makes the type-preservation proof significantly
more challenging. In fact, and against all expectations, no existing version of DOT appears to
be expressive enough for this task and we are forced to extend oopslaDOT with an additional
subtyping rule And-Bind. We provide a mechanized type safety proof for our extension which
we base on the existing mechanization of oopslaDOT.

Having run out of Java calculi we could repurpose, we develop Pathless Scala in Chapter 5

5



Chapter 1. Introduction

which adds intersection types and multiple inheritance to Featherweight Generic Java. Here
again, the existing DOT rules fall short and we end up needing an extra typing rule And-I’ to
complete our type-preservation proof. Proving the resulting extended DOT calculus sound
requires generalizing the statement of the type soundness theorem originally presented in
[Rompf and Amin 2016], this is reflected in our updated mechanized type safety proof.

Pathless Lattice Scala in Chapter 6 turns subtyping into a lattice by adding union types (which
represent least upper bounds) and Nothing (which represents bottom). This is also the first
chapter where we define algorithmic subtyping rules.

Finally, Dependent Scala in Chapter 7 adds type members and type selections to our source
language. Besides justifying our use of DOT as a target language, this sheds a new light on DOT
itself: we find that the seemingly problematic restrictions of oopslaDOT’s declarative subtyping
rules involving type selections do not prevent us from developing algorithmic subtyping rules
for our source calculus that match the expressiveness of real Scala.

As a bonus, and to demonstrate that the calculi we develop here are useful for more than
establishing soundness, Appendix A develops a translation from Pathless Scala into a superset
of Featherweight Java with interfaces to model how type erasure from Scala to Java bytecode is
implemented in the compiler. We believe that specifying type erasure in detail is important
and cannot be left as an implementation detail because it is critical to maintaining binary-
compatibility of artifacts produced by different versions of the Scala compiler.

6



2 Dependent Object Types

In this chapter we review the Dependent Object Types (DOT) family of calculi. In particular,
we contrast [Rompf and Amin 2016] with [Amin, Grütter, et al. 2016] and justify why we
chose the former as a basis for the target calculi we use in subsequent chapters. We then
introduce some “syntactic sugar” (that is, derived syntactic forms) to improve the readability of
our translations. Finally, we prove various meta-theoretic properties of DOT that will be useful
in our type-preserving translation proofs.

2.1 A short and incomplete history of the DOT family
As Figure 2.1 attests, there is not one DOT.1 But while each of these papers may have its own
take on exactly what DOT is, the running theme among them is clear: Scala features a rich
type system but its defining characteristic is its support for path-dependent types. 𝑝.𝐿 is a
path-dependent type if 𝑝 is a reference to an object with a type member 𝐿 where 𝑝 itself is
either a variable 𝑥 or a reference to a term member 𝑝1.𝑙 . The type of 𝑝 specifies both an upper-
and lower-bound for 𝐿 that determine its place in the subtyping hierarchy. In particular, this
means that depending on the context, the subtyping hierarchy can be extended in arbitrary
ways which is a major source of complexity for the meta-theory of DOT.

The first publication on DOT [Amin, Moors, and Odersky 2012] did not include a soundness
proof, but it served as motivation and roadmap for the development of the Scala 3 language
and compiler: it argued both for replacing the non-commutative “compound types” 𝐴with𝐵 of
Scala 2 with true intersection types and for adding union types to ensure that the least upper
bound of a type is always defined.2 The intuition was that each aspect of the Scala 3 type system
ought to be translatable into DOT,3 but this translation was never formally defined.

1Amusingly, this figure was also generated using DOT (https://en.wikipedia.org/wiki/DOT_(graph_descrip-
tion_language)).

2In Scala 2, the least upper bound of two types could have an infinite expansion. This required the compiler to
rely on heuristics when typing a conditional expression for example.

3In fact, initial versions of the compiler implemented support for type parameters by desugaring them into type
members. However, we were unable to scale this approach to support the full power of higher-kinded types that Scala
2 users were accustomed to. So type parameters were reintroduced as a first class concept in the compiler [Odersky,
Martres, and Petrashko 2016]. Much theoretical work remains to be done to combine DOT with higher-kinded

7
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Figure 2.1: DOT: A family tree

μDOT
[2014]

oopslaDOT
[2016]

wfDOT
[2016]

pDOT
[2019]

Mutable wfDOT
[2017]

DIF
[2019]

κDOT
[2018]

foolDOT
[2012]

gDOT
[2020]

cDOT
[2022]

ιDOT
[2020]

𝐴 → 𝐵 means “A is a fragment of B”

𝐴 ⤏ 𝐵 means “A inspired B”

Four years later, soundness proofs were finally published4 for two closely related calculi. At
this point, we need to introduce nicknames to distinguish these calculi since they are all known
as “DOT”. We will refer to them respectively as “foolDOT” [Amin, Moors, and Odersky 2012],
“wfDOT” [Amin, Grütter, et al. 2016] and “oopslaDOT” [Rompf and Amin 2016] based on the
name of the conference they were published at (respectively FOOL’2012, WadlerFest’2016 and
OOPSLA’2016).

Compared to foolDOT, both later DOTs restricted the paths in path-dependent types to just
variables. Compared to oopslaDOT, wfDOT trades off some expressiveness for a simpler meta-

types [Stucki and Giarrusso 2021] and in this thesis we will only consider fragments of Scala without such types.
4There exists an earlier soundness proof for the 𝜇DOT [Amin, Rompf, and Odersky 2014] fragment which

features a minimal type system that only supports record types and path-dependent types.
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theory. We will explore the exact differences and their impact on our work in the next section.

Thanks to its relative simplicity, wfDOT has since been successfully extended in multiple
ways. The restriction of path-dependent types to variables was lifted in pDOT [Rapoport and
Lhoták 2019]. Other variants of DOT explored mutability [Rapoport and Lhoták 2017], object
initialization [Kabir and Lhoták 2018; Kabir, Li, and Lhoták 2020], implicit functions [Jeffery
2019] and pattern matching with GADT-like inferred local constraints [Boruch-Gruszecki et al.
2022]. In this thesis, we will only consider fragments of Scala with variable-dependent types
and without mutability, implicits or pattern matching, so these extensions are outside the scope
of our discussion.

We mention in passing [Giarrusso et al. 2020] which features a very extensive type system
backed by an impressive meta-theory machinery based on the Iris framework [Jung et al. 2018].
However, the actual degree of expressiveness of gDOT is still an open question due to its reliance
on annotations as described in Section 9 of the paper:

“[Amin, Grütter, et al. 2016] prove that all 𝐹<: programs can be translated into DOT.
Due to the presence of the ⊳ operator and the coerce annotations, it is unclear how
to create a translation from either (p)DOT or 𝐹<: into gDOT. However, we have
been able to translate many given 𝐹<: and DOT examples into gDOT by hand by
adding a sufficient number of ⊳ and coerce annotations. We thus conjecture that
there exists a whole-program encoding of 𝐹<: programs into gDOT.”

We now turn our attention towards evaluating which of wfDOT and oopslaDOT is a better
target calculus in our quest towards establishing soundness for a significant subset of Scala. We
first present oopslaDOT in detail and then contrast it with wfDOT, before ultimately settling on
oopslaDOT due to its support for subtyping between recursive types which our type-preserving
compilation proofs will critically rely on.

2.2 Syntax and semantics of oopslaDOT
Figures 2.2 to 2.4 are adapted from [Rompf and Amin 2016]. The notation 𝑡𝑥 emphasizes that 𝑥
may appear free in 𝑡 and Γ[𝑥 ] is a truncated context where all bindings to the right of 𝑥 in Γ

are dropped. Figure 2.4 simultaneously defines a regular typing judgment Γ ⊢ 𝑡 : 𝑇 and a less
powerful “strict typing” judgment Γ ⊢ 𝑡 :! 𝑇 using the syntax :(!) to denote the rules which are
applicable to both judgments. Unlike the original presentation, our syntax definition allows
optional type ascriptions on method arguments and result types (the paper notes that their
mechanized proof supports both variants). We denote optional syntax elements with

⁓⁓⁓⁓⁓
wavy

⁓⁓⁓⁓⁓⁓⁓⁓⁓
underlines.

2.2.1 Well-formedness
Although [Rompf and Amin 2016] does not formally define a well-formedness judgment, it does
implicitly rely on one as stated in Section 3 of the paper:

“For readability, we omit well-formedness requirements from the rules, and assume

9
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Figure 2.2: oopslaDOT: Syntax

𝑥, 𝑦, 𝑧 Variable
𝐿 Type label
𝑚 Method label

𝑠, 𝑡, 𝑢 ⩴ Term
𝑥 variable reference
{𝑧 ⇒ 𝑑} object
𝑠 .𝑚(𝑡) method invocation

Γ ⩴ 𝑥 : 𝑇 Context

𝜎, 𝜏 ⩴ [𝑆/𝑇 ] Type substitution
𝜃 ⩴ [𝑦/𝑥] Variable substitution

𝑑 ⩴ Declaration
𝐿 = 𝑇 type tag
𝑚(𝑥 : 𝑆

⁓⁓
) : 𝑈 𝑥

⁓⁓⁓
= 𝑡 method member

𝑆, 𝑇 , 𝑈 ⩴ Type
⊤ top type
⊥ bottom type
𝐿 : 𝑆 .. 𝑈 type member
𝑚(𝑥 : 𝑆) : 𝑈 𝑥 method member
𝑥 .𝐿 type selection
{𝑧 ⇒ 𝑇

𝑧} recursive self type
𝑇 ∧𝑇 intersection type
𝑇 ∨𝑇 union type

all types to be syntactically well-formed in the given environment.”

The type-preserving proofs we present in later chapters will require us to pay close attention
to well-formedness (intuitively, we’d like our translation to preserve some notion of well-
formedness), so we explicitly define it in Figure 2.5. Note that Γ ⊢ 𝑥 .𝐿 wf doesn’t require 𝑥 to
have a type member 𝐿.

2.2.2 Evaluating wfDOT and oopslaDOT as compilation targets
So how does oopslaDOT measure up against wfDOT? In this comparison we will only consider
the static semantics of both calculi. While the operational semantics of oopslaDOT described in
[Rompf and Amin 2016, Figure 2] are more complex due to the use of a store, there exists an
alternative store-less presentation in [Amin 2016, § 3.5] which relies on augmenting the syntax
to allow values and not just variables as paths.

We can safely ignore some syntactic differences which do not significantly affect expressiveness:

• wfDOT syntax directly supports let bindings, but oopslaDOT can encode them (see
Definition 2.3.4).

• wfDOT does not have methods, but it can encode them using fields that return lambdas.

• wfDOT only allows function applications where both the function and the argument are
variables, but arbitrary applications can be translated into that form using let bindings.

The only significant syntactic difference between the two system is the lack of union types
in wfDOT. This is concerning since, as we described in Section 2.1, unions are an important
aspect of the Scala 3 type system which we model in Chapter 6. While this omission hasn’t yet
been rectified by subsequent work, there are no known meta-theoretical difficulties unique to
the interaction of union types with the rest of DOT. So this is likely more of a practical than

10
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Figure 2.3: oopslaDOT: Subtyping rules

Γ ⊢ 𝑆 <: 𝑈
Lattice structure

Γ ⊢ ⊥ <: 𝑇 (Bot)

Γ ⊢ 𝑇1 <: 𝑇
Γ ⊢ 𝑇1 ∧𝑇2 <: 𝑇

(And11)

Γ ⊢ 𝑇2 <: 𝑇
Γ ⊢ 𝑇1 ∧𝑇2 <: 𝑇

(And12)

Γ ⊢ 𝑇 <: 𝑇1, 𝑇 <: 𝑇2

Γ ⊢ 𝑇 <: 𝑇1 ∧𝑇2
(And2)

Γ ⊢ 𝑇 <: ⊤ (Top)

Γ ⊢ 𝑇 <: 𝑇1

Γ ⊢ 𝑇 <: 𝑇1 ∨𝑇2
(Or21)

Γ ⊢ 𝑇 <: 𝑇2

Γ ⊢ 𝑇 <: 𝑇1 ∨𝑇2
(Or22)

Γ ⊢ 𝑇1 <: 𝑇, 𝑇2 <: 𝑇
Γ ⊢ 𝑇1 ∨𝑇2 <: 𝑇

(Or1)

Type and method members

Γ ⊢ 𝑆2 <: 𝑆1, 𝑈1 <: 𝑈2

Γ ⊢ 𝐿 : 𝑆1 .. 𝑈1 <: 𝐿 : 𝑆2 .. 𝑈2

(Typ)
Γ ⊢ 𝑆2 <: 𝑆1 Γ, 𝑥 : 𝑆2 ⊢ 𝑈 𝑥

1 <: 𝑈 𝑥
2

Γ ⊢𝑚(𝑥 : 𝑆1) : 𝑈 𝑥
1 <:𝑚(𝑥 : 𝑆2) : 𝑈 𝑥

2

(Fun)

Path selections

Γ[𝑥 ] ⊢ 𝑥 :! (𝐿 : ⊥ .. 𝑇 )
Γ ⊢ 𝑥 .𝐿 <: 𝑇

(Sel1)

Γ ⊢ 𝑥 .𝐿 <: 𝑥 .𝐿 (SelX)

Γ[𝑥 ] ⊢ 𝑥 :! (𝐿 : 𝑆 .. ⊤)
Γ ⊢ 𝑆 <: 𝑥 .𝐿

(Sel2)

Recursive self types

Γ, 𝑧 : 𝑇 𝑧
1 ⊢ 𝑇 𝑧

1 <: 𝑇 𝑧
2

Γ ⊢ {𝑧 ⇒ 𝑇
𝑧
1 } <: {𝑧 ⇒ 𝑇

𝑧
2 }

(BindX)
Γ, 𝑧 : 𝑇 𝑧

1 ⊢ 𝑇 𝑧
1 <: 𝑇2

Γ ⊢ {𝑧 ⇒ 𝑇
𝑧
1 } <: 𝑇2

(Bind1)

Transitivity

Γ ⊢ 𝑇1 <: 𝑇2, 𝑇2 <: 𝑇3
Γ ⊢ 𝑇1 <: 𝑇3

(Trans)

11
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Figure 2.4: oopslaDOT: Typing rules

Type assignment Γ ⊢ 𝑡 :(!) 𝑇
Variables, self packing/unpacking

Γ(𝑥) = 𝑇 𝑥

Γ ⊢ 𝑥 :(!) 𝑇
𝑥

(Var)

Γ ⊢ 𝑥 : 𝑇 𝑥

Γ ⊢ 𝑥 : {𝑧 ⇒ 𝑇
𝑧}

(VarPack)

Γ ⊢ 𝑥 :(!) {𝑧 ⇒ 𝑇
𝑧}

Γ ⊢ 𝑥 :(!) 𝑇
𝑥

(VarUnpack)

Subsumption

Γ ⊢ 𝑡 :(!) 𝑇1, 𝑇1 <: 𝑇2
Γ ⊢ 𝑡 :(!) 𝑇2

(Sub)

Method invocation

Γ ⊢ 𝑡 : (𝑚(𝑥 : 𝑇1) : 𝑇 𝑥
2 ), 𝑦 : 𝑇1

Γ ⊢ 𝑡 .𝑚(𝑦) : 𝑇 𝑦

2

(TAppVar)

Γ ⊢ 𝑡 : (𝑚(𝑥 : 𝑇1) : 𝑇2), 𝑡2 : 𝑇1 𝑥 ∉ fv(𝑇2)
Γ ⊢ 𝑡 .𝑚(𝑡2) : 𝑇2

(TApp)

Object creation

(labels disjoint)

Γ, 𝑧 : 𝑇 𝑧
1 ∧ ... ∧𝑇 𝑧

𝑛 ⊢ 𝑑𝑖 : 𝑇 𝑧
𝑖 ∀𝑖 .1 ≤ 𝑖 ≤ 𝑛

Γ ⊢ {𝑧 ⇒ 𝑑1 ... 𝑑𝑛} : {𝑧 ⇒ 𝑇
𝑧
1 ∧ ... ∧𝑇 𝑧

𝑛 }
(TNew)

Member initialization Γ ⊢ 𝑑 : 𝑇

Γ ⊢ 𝑇 <: 𝑇

Γ ⊢ (𝐿 = 𝑇 ) : (𝐿 : 𝑇 .. 𝑇 )
(DTyp)

Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇 𝑥
2

Γ ⊢ (𝑚(𝑥 : 𝑇1) : 𝑇 𝑥
2 = 𝑡) : (𝑚(𝑥 : 𝑇1) : 𝑇 𝑥

2 )
(DFun)
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Figure 2.5: oopslaDOT: Free variables and well-formedness

Well-formed type Γ ⊢ 𝑇 wf

fv(𝑇 ) ⊆ dom(Γ)
Γ ⊢ 𝑇 wf

(WTyp)

Well-formed term Γ ⊢ 𝑡 wf

fv(𝑡) ⊆ dom(Γ)
Γ ⊢ 𝑡 wf

(WTerm)

Well-formed environment Γ wf

∅ wf (WEmpty)

Γ wf Γ, 𝑥 : 𝑇 𝑥 ⊢ 𝑇 𝑥 wf

Γ, 𝑥 : 𝑇 𝑥 wf
(WEnv)

theoretical problem and does not by itself disqualify wfDOT as a target calculus assuming we
are willing to add back unions ourselves.

wfDOT does have one typing rule that has no counterpart in oopslaDOT:

Γ ⊢ 𝑥 : 𝑇 Γ ⊢ 𝑥 : 𝑈

Γ ⊢ 𝑥 : 𝑇 ∧𝑈
(And-I)

However, we will show in Subsection 5.5.1 that oopslaDOT can be extended with rules that
generalize And-I.

In the end, the only fundamental differences between wfDOT and oopslaDOT lie in their
subtyping rules, as summarized in Figure 2.6. oopslaDOT supports subtyping between recursive
types via rules BindX and Bind1 and these rules have no equivalent in wfDOT. The price
oopslaDOT pays for this is a significantly more complex soundness proof and some seemingly
arbitrary restrictions on subtyping involving type selections (in rules Sel1 and Sel2): the variable
containing the type member being selected must be typed in a truncated context using the
“strict typing” judgment Γ ⊢ 𝑥 :! 𝑇 which prohibits use of VarPack.5,6

Having described the differences between these two calculi, it is now time to determine which
one we shall use as the target of our type-preserving compilation schemes. At first glance,
wfDOT looks like the better candidate: Scala does not have a direct equivalent to the recursive
subtyping rules wfDOT lacks, and the Scala compiler never performs context truncation in
subtyping, so the restrictions imposed by oopslaDOT seem like potential impediments. In fact,

5See [Hu 2019] for an example illustrating the effect of context truncation on expressiveness.
6In addition, Sel1 requires 𝑥 to have type (𝐿 : ⊥ .. 𝑇 ) whereas Sel-< : uses type (𝐿 : 𝑆 .. 𝑇 ) for some arbitrary 𝑆

instead, but the more general rule can be recovered via Typ, Bot and Trans.
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Figure 2.6: Comparison of oopslaDOT and wfDOT subtyping rules

oopslaDOT subtyping

Γ[𝑥 ] ⊢ 𝑥 : ! (𝐿 : ⊥ .. 𝑇 )
Γ ⊢ 𝑥 .𝐿 <: 𝑇

(Sel1 )

Γ[𝑥 ] ⊢ 𝑥 : ! (𝐿 : 𝑆 .. ⊤ )
Γ ⊢ 𝑆 <: 𝑥 .𝐿

(Sel2 )

Γ, 𝑧 : 𝑇 𝑧
1 ⊢ 𝑇 𝑧

1 <: 𝑇 𝑧
2

Γ ⊢ {𝑧 ⇒ 𝑇
𝑧
1 } <: {𝑧 ⇒ 𝑇

𝑧
2 }

(BindX )

Γ, 𝑧 : 𝑇 𝑧
1 ⊢ 𝑇 𝑧

1 <: 𝑇2
Γ ⊢ {𝑧 ⇒ 𝑇

𝑧
1 } <: 𝑇2

(Bind1 )

wfDOT subtyping

Γ ⊢ 𝑥 : (𝐿 : 𝑆 .. 𝑇 )
Γ ⊢ 𝑥 .𝐿 <: 𝑇

(Sel-< :)

Γ ⊢ 𝑥 : (𝐿 : 𝑆 .. 𝑇 )
Γ ⊢ 𝑆 <: 𝑥 .𝐿

(< :-Sel)

Amin expressed a similar sentiment in her thesis [Amin 2016, § 3.5.2]:

“Let’s first consider the stepping-stone option pursued by pragmatism in prior
work [Amin, Grütter, et al. 2016] of omitting recursive types from subtyping,
making them second-class types. This option has the big advantage of simplicity:
typing can be used without caveats in subtyping type selections. Furthermore, this
option is a decent match for Dotty / Scala which already has several restrictions on
structural recursive types.”

The most surprising result of this thesis is that wfDOT is in fact not a good target calculus
for Scala, but oopslaDOT is! Both calculi would likely work equally well as compilation
targets for Featherweight Java (Chapter 3), but as soon as we extend our source calculus to
Featherweight Generic Java in Chapter 4, our proofs of type-preserving compilation end up
critically relying on the subtyping rules involving recursive types.7 These rules let us establish
subtyping preservation8: if Γ ⊢ 𝑆 <: 𝑇 holds in our source language, then given the function |·|
that translates types and environments into our target language, we should be able to prove
|Γ | ⊢ |𝑆 | <: |𝑇 |.

What about the restrictions present in Sel1 and Sel2? The use of “strict typing” does not cause
any issue in our proofs in practice, but the context truncation restriction from Sel1 and Sel2

do need to be reflected in the declarative subtyping rules DS-SelOther1 and DS-SelOther2 in
Chapter 7. However, we find that we can define sound algorithmic subtyping rules AS-Sel1 and
AS-Sel2 that do not require context truncation and match the behavior of the Scala 3 compiler.

7Subsection 4.3.1 presents an alternative translation scheme which does not require subtyping between recursive
types but forces us to restrict the set of valid class hierarchies.

8If our translation didn’t have this property we would have to inserts coercions to emulate subtyping, but this
would likely make the expression translation much more complex and defeat the point of relying on the DOT type
system to encode and reason about core Scala semantics.
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In other words, the restrictions imposed by oopslaDOT do not prevent us from translating Scala
programs that the compiler would accept, which is great news!

Having established oopslaDOT as the most appropriate target calculus for our purposes, we
will spend the rest of this chapter studying it but will now refer to it simply as “DOT”. Note
however that the DOT we discuss here will still need to be extended in subsequent chapters.
In Chapter 4, we introduce applied class types which require augmenting oopslaDOT with
an extra subtyping rule (And-Bind in subsection 4.3.1) for the subtyping preservation proof
to go through. In Chapter 5, we introduce intersection types which require an extra typing
rule (And-I’ in subsection 5.5.1). In both cases, we prove the resulting extended calculus sound
by updating the existing Coq mechanization of oopslaDOT. In the latter case, this requires
generalizing the original type soundness theorem [Rompf and Amin 2016, Theorem 1] to imply
the usual property of preservation in Theorem 5.5.4.

2.3 Syntactic sugar
The following derived syntactic forms will come in handy in our translations.

Definition 2.3.1: Type alias

(𝑋 = 𝑇 ) 〜 (𝑋 : 𝑇 .. 𝑇 )

Definition 2.3.2: List in recursive type

{𝑧 ⇒ 𝑇 }〜 {𝑧 ⇒
⋀︂
𝑇 }

Definition 2.3.3: Anonymous function

Derived type
(𝑥 : 𝑆) ⇒ 𝑈 〜 {_ ⇒ apply(𝑥 : 𝑆) : 𝑈 }

Derived term
𝜆𝑥.𝑢 〜 {_ ⇒ apply(𝑥) = 𝑢}

Definition 2.3.4: Let bindings

let 𝑥 = 𝑠 in 𝑢 〜 (𝜆𝑥. 𝑢) .apply(𝑠)
let 𝑥 = 𝑠, 𝑦 = 𝑡 in 𝑢 〜 let 𝑥 = 𝑠 in (let 𝑦 = 𝑡 in 𝑢)

Lemma 2.3.5

Γ ⊢ 𝑡 : 𝑇 Γ, 𝑥 : 𝑇 ⊢ 𝑠 : 𝑆 𝑥 ∉ fv(𝑆)
Γ ⊢ let 𝑥 = 𝑡 in 𝑠 : 𝑆

(Let)
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Proof.

Γ ⊢ 𝑡 : 𝑇 𝑥 ∉ fv(𝑆)

Γ, 𝑥 : 𝑇 ⊢ 𝑠 : 𝑆
(DFun)

Γ ⊢ (apply(𝑥) = 𝑠) : (apply(𝑥 : 𝑇 ) : 𝑆)
(TNew, WeakenTp)

Γ ⊢ {_ ⇒ apply(𝑥) = 𝑠} : {_ ⇒ apply(𝑥 : 𝑇 ) : 𝑆}
(Sub, Bind1)

Γ ⊢ {_ ⇒ apply(𝑥) = 𝑠} : (apply(𝑥 : 𝑇 ) : 𝑆)
(TApp)

Γ ⊢ let 𝑥 = 𝑡 in 𝑠 : 𝑆
■

Definition 2.3.6: Methods with variable number of parameters

In a parameter list, we allow each parameter type to refer to all previous parameters and
the result type to refer to all parameters.
Derived types

𝑚() : 𝑈0 〜 𝑚(_ : ⊤) : 𝑈0

𝑚(𝑥 : 𝑆, 𝑦 : 𝑇 ) : 𝑈0 〜 𝑚(𝑥 : 𝑆) : ((𝑦 : 𝑇 ) ⇒ 𝑈0)

Derived declarations (all type ascriptions are optional)
𝑚() : 𝑈0 = 𝑡 〜 𝑚(_ : ⊤) : 𝑈0 = 𝑡

𝑚(𝑥 : 𝑆, 𝑦 : 𝑇 ) : 𝑈0 = 𝑡 〜 𝑚(𝑥 : 𝑆) : ((𝑦 : 𝑇 ) ⇒ 𝑈0) = 𝑡

Derived terms
𝑡 .𝑚() 〜 𝑡 .𝑚({_ ⇒})

𝑡 .𝑚(𝑥, 𝑦) 〜 𝑡 .𝑚(𝑥) .apply(𝑦)

Lemma 2.3.7
We can generalize DFun, Fun, TApp and TAppVar to methods with variable number of
parameters. Note that TApp’ generalizes both TApp and TAppVar since it lets the result
type depend on a subset of the method arguments. We intentionally make the names of
each parameter coincide with the name of the corresponding argument to avoid having
to write down all the variable substitutions that could be involved.

Δ0 = Γ Δ𝑖+1 = Δ𝑖 , 𝑥𝑖+1 : 𝑆𝑖+1
Δ𝑖 ⊢ 𝑆𝑖+1 wf Δ𝑛 ⊢ 𝑢 : 𝑈

Γ ⊢ (𝑚(𝑥 : 𝑆) : 𝑈 = 𝑢) : (𝑚(𝑥 : 𝑆) : 𝑈 )
(DFun’)

Δ0 = Γ Δ𝑖+1 = Δ𝑖 , 𝑥𝑖+1 : 𝑆𝑖+1
Δ𝑖+1 ⊢ 𝑇𝑖+1 <: 𝑆𝑖+1 Δ𝑛 ⊢ 𝑈1 <: 𝑈2

Γ ⊢𝑚(𝑥 : 𝑆) : 𝑈1 <:𝑚(𝑥 : 𝑇 ) : 𝑈2

(Fun’)

Γ ⊢ 𝑡 : (𝑚(𝑥 : 𝑆, 𝑦 : 𝑇 ) : 𝑈 )
Δ0 = Γ Δ𝑖+1 = Γ, 𝑥𝑖+1 : 𝑆𝑖+1

Δ𝑛 ⊢ 𝑡 : 𝑇
Γ ⊢ 𝑡 .𝑚(𝑥, 𝑡) : 𝑈

(TApp’)
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2.4 Meta-theory

2.4 Meta-theory
The following derived subtyping rules are defined in [Rompf and Amin 2016]:

Γ ⊢ 𝑇 <: 𝑇 (Refl)

Γ1 ⊢ 𝑇1 <: 𝑇2 Γ2(𝑥) = 𝑇2 Γ1 = Γ2(𝑥 → 𝑇1)
Γ2 ⊢ 𝑆 <: 𝑈

Γ1 ⊢ 𝑆 <: 𝑈
(Narrow)

where Γ1 = Γ2(𝑥 → 𝑇1) means that Γ1 is equal to Γ2 for all inputs except 𝑥 which it maps to 𝑇1.

Lemma 2.4.1: Weakening

Γ1, Γ2 ⊢ 𝑇1 <: 𝑇2 𝑦 ∉ dom(Γ1)
Γ1, 𝑦 : 𝑈 , Γ2 ⊢ 𝑇1 <: 𝑇2

(Weaken)

Γ1, Γ2 ⊢ 𝑡 :(!) 𝑇 𝑦 ∉ dom(Γ1)
Γ1, 𝑦 : 𝑈 , Γ2 ⊢ 𝑡 :(!) 𝑇

(WeakenTp)

Proof. Both rules are proved together by simultaneous induction on the size of the subtyping
and typing derivations, we only show a few representative cases:

Case
(Γ1, Γ2)[𝑥 ] ⊢ 𝑥 :! (𝐿 : 𝑇 .. ⊤)

(Sel2)
Γ1, Γ2 ⊢ 𝑇 <: 𝑥 .𝐿

We can distinguish two sub-cases:
• If 𝑥 ∈ Γ1, then (Γ1, 𝑦 : 𝑈 , Γ2)[𝑥 ] = (Γ1, Γ2)[𝑥 ] and Sel2 finishes the case.
• If 𝑥 ∈ Γ2, then (Γ1, Γ2)[𝑥 ] = Γ1, Γ2[𝑥 ]

and (Γ1, 𝑦 : 𝑈 , Γ2)[𝑥 ] = Γ1, 𝑦 : 𝑈 , Γ2[𝑥 ]
, therefore by

the IH we have (Γ1, 𝑦 : 𝑈 , Γ2)[𝑥 ] ⊢ 𝑥 :! (𝐿 : 𝑇 .. ⊤) and Sel2 finishes the case again.

Case
Γ1, Γ2, 𝑧 : 𝑇

𝑧
1 ⊢ 𝑇 𝑧

1 <: 𝑇 𝑧
2

(BindX)
Γ1, Γ2 ⊢ {𝑧 ⇒ 𝑇

𝑧
1 } <: {𝑧 ⇒ 𝑇

𝑧
2 }

By the IH we have Γ1, 𝑦 : 𝑈 , Γ2, 𝑧 : 𝑇
𝑧
1 ⊢ 𝑇 𝑧

1 <: 𝑇 𝑧
2 and BindX finishes the case.

■

Lemma 2.4.2: Narrowing of types

Γ1 ⊢ 𝑇1 <: 𝑇2 Γ2(𝑥) = 𝑇2 Γ1 = Γ2(𝑥 → 𝑇1)
Γ2 ⊢ 𝑠 :(!) 𝑆
Γ1 ⊢ 𝑠 :(!) 𝑆

(NarrowTp)

Proof. By induction on the derivation of Γ2 ⊢ 𝑠 :(!) 𝑆 , with a case analysis on the final rule. We
only show Var and TNew as all other cases follow directly from the IH and Narrow.
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Chapter 2. Dependent Object Types

Case
Γ2(𝑠) = 𝑆

(Var)
Γ2 ⊢ 𝑠 :(!) 𝑆

We can distinguish two sub-cases:
• If 𝑠 = 𝑥 , then 𝑆 = 𝑇2, Γ1(𝑠) = 𝑇1 and Sub finishes the case.
• Otherwise, Γ1(𝑠) = 𝑆 and Var finishes the case.

Case

𝑈 = 𝑈
𝑧
1 ∧ ... ∧𝑈 𝑧

𝑛

Γ2, 𝑧 : 𝑈 ⊢ 𝑑𝑖 : 𝑈 𝑧
𝑖 ∀𝑖 . 1 ≤ 𝑖 ≤ 𝑛

(TNew)
Γ2 ⊢ {𝑧 ⇒ 𝑑1 ... 𝑑𝑛} : {𝑧 ⇒ 𝑈 }

By Weaken we have Γ1, 𝑧 : 𝑈 ⊢ 𝑇1 <: 𝑇2 so by the IH Γ1, 𝑧 : 𝑈 ⊢ 𝑑𝑖 : 𝑈 𝑧
𝑖 and TNew finishes the

case.
■

Lemma 2.4.3

Γ2(𝑥) = 𝑇 𝑥 Γ1 = Γ2(𝑥 → {𝑧 ⇒ 𝑇
𝑧})

Γ2 ⊢ 𝑆 <: 𝑈

Γ1 ⊢ 𝑆 <: 𝑈
(EnvPack)

Γ2(𝑥) = 𝑇 𝑥 Γ1 = Γ2(𝑥 → {𝑧 ⇒ 𝑇
𝑧})

Γ2 ⊢ 𝑠 :(!) 𝑆
Γ1 ⊢ 𝑠 :(!) 𝑆

(EnvPackTp)

Proof. By simultaneous induction on the size of the subtyping and typing derivations, we only
show the Var case as all others follow by the IH:

Case
Γ2(𝑠) = 𝑆

(Var)
Γ2 ⊢ 𝑠 :(!) 𝑆

We can distinguish two sub-cases:
• If 𝑠 = 𝑥 , then 𝑆 = 𝑇

𝑥 and Γ1 ⊢ 𝑠 :(!) {𝑧 ⇒ 𝑇
𝑧} by Var. VarUnpack finishes the case.

• Otherwise, Γ1(𝑠) = 𝑆 and Var finishes the case.
■

Lemma 2.4.4: Commutativity and associativity of intersection

Γ ⊢𝑇1∧𝑇2 <:𝑇2∧𝑇1, Γ ⊢𝑇1∧(𝑇2∧𝑇3) <: (𝑇1∧𝑇2)∧𝑇3 and Γ ⊢ (𝑇1∧𝑇2)∧𝑇3 <:𝑇1∧(𝑇2∧𝑇3)

Proof. By And2, And11, And12 and Refl. ■
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2.4 Meta-theory

Lemma 2.4.5: Width and depth subtyping

1. Γ ⊢ 𝑇0 ∧𝑇1 ∧𝑇2 <: 𝑇1
2. Γ ⊢ {𝑧 ⇒ 𝑇0 ∧𝑇1 ∧𝑇2} <: {𝑧 ⇒ 𝑇1}
3. If Γ ⊢ 𝑆 <: 𝑇 then Γ ⊢

⋀︂
𝑆 <:

⋀︂
𝑇

4. If Γ, 𝑧 :
⋀︂
𝑆 ⊢ 𝑆 <: 𝑇 then Γ ⊢ {𝑧 ⇒ 𝑆} <: {𝑧 ⇒ 𝑇 }

Lemma 2.4.6: Substituting type selection by equal type preserves type equality

Given 𝜎 = [𝑇 /𝑥 .𝐿] and Γ ⊢ 𝑇 =:= 𝑥 .𝐿, if Γ ⊢ 𝑈 wf then Γ ⊢ 𝜎𝑈 =:= 𝑈

Proof. By structural induction on 𝑈 . Cases 𝑈 = ⊥ and 𝑈 = ⊤ are trivial since in those cases
𝜎𝑈 = 𝑈 .

Case 𝑈 = 𝑦.𝐿
′

If𝑈 ∉ dom(𝜎) then 𝜎𝑈 = 𝑈 . Otherwise, 𝜎𝑈 = 𝑇𝑖 for some 𝑖 and we know that Γ ⊢ 𝑇𝑖 =:= 𝑈 .

Case 𝑈 = (𝐿 : 𝑈1 .. 𝑈2)

We have 𝜎𝑈 = (𝐿 : 𝜎𝑈1 .. 𝜎𝑈2). By the IH, Γ ⊢ 𝜎𝑈1 =:= 𝑈1 and Γ ⊢ 𝜎𝑈2 =:= 𝑈2. Typ finishes
the case.

Case 𝑈 =𝑚(𝑥 : 𝑈1) : 𝑈 𝑥
2

We have 𝜎𝑈 =𝑚(𝑥 : 𝜎𝑈1) : 𝜎𝑈 𝑥
2 .

(IH)
Γ ⊢ 𝑈1 <: 𝜎𝑈1

(Weaken)
Γ, 𝑥 : 𝜎𝑈1 ⊢ 𝑇 =:= 𝑥 .𝐿

(IH)
Γ, 𝑥 : 𝜎𝑈1 ⊢ 𝑈 𝑥

2 <: 𝜎𝑈 𝑥
2

(Fun)
Γ ⊢𝑚(𝑥 : 𝑈1) : 𝑈 𝑥

2 <:𝑚(𝑥 : 𝜎𝑈1) : 𝜎𝑈 𝑥
2

(IH)
Γ ⊢ 𝜎𝑈1 <: 𝑈1

(Weaken)
Γ, 𝑥 : 𝑈1 ⊢ 𝑇 =:= 𝑥 .𝐿

(IH)
Γ, 𝑥 : 𝑈1 ⊢ 𝜎𝑈 𝑥

2 <: 𝑈 𝑥
2

(Fun)
Γ ⊢𝑚(𝑥 : 𝜎𝑈1) : 𝜎𝑈 𝑥

2 <:𝑚(𝑥 : 𝑈1) : 𝑈 𝑥
2

Case 𝑈 = {𝑧 ⇒ 𝑈
𝑧
1 }

We have 𝜎𝑈 = {𝑧 ⇒ 𝜎𝑈
𝑧
1 }, we only show one direction since the other proceeds similarly.

(Weaken)
Γ, 𝑧 : 𝑈 𝑧

1 ⊢ 𝑇 =:= 𝑥 .𝐿
(IH)

Γ, 𝑧 : 𝑈 𝑧
1 ⊢ 𝑈 𝑧

1 <: 𝜎𝑈 𝑧
1

(BindX)
Γ ⊢ {𝑧 ⇒ 𝑈

𝑧
1 } <: {𝑧 ⇒ 𝜎𝑈

𝑧
1 }
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Case 𝑈 = 𝑈1 ∧𝑈2

We have 𝜎𝑈 = 𝜎𝑈1 ∧ 𝜎𝑈2 and again we only show one direction.

(IH)
Γ ⊢ 𝑈1 <: 𝜎𝑈1

(And12)
Γ ⊢ 𝑈1 ∧𝑈2 <: 𝜎𝑈1

(IH)
Γ ⊢ 𝑈2 <: 𝜎𝑈2

(And12)
Γ ⊢ 𝑈1 ∧𝑈2 <: 𝜎𝑈2

(And2)
Γ ⊢ 𝑈1 ∧𝑈2 <: 𝜎𝑈1 ∧ 𝜎𝑈2

Case 𝑈 = 𝑈1 ∨𝑈2

We have 𝜎𝑈 = 𝜎𝑈1 ∨ 𝜎𝑈2 and we only show one direction here too.

(IH)
Γ ⊢ 𝑈1 <: 𝜎𝑈1

(Or21)
Γ ⊢ 𝑈1 <: 𝜎𝑈1 ∨ 𝜎𝑈2

(IH)
Γ ⊢ 𝑈2 <: 𝜎𝑈2

(Or22)
Γ ⊢ 𝑈2 <: 𝜎𝑈1 ∨ 𝜎𝑈2

(Or1)
Γ ⊢ 𝑈1 ∨𝑈2 <: 𝜎𝑈1 ∨ 𝜎𝑈2

■

Lemma 2.4.7: Substituting type selection by equal type preserves typing

Given 𝜎 = [𝑇 /𝑥 .𝐿] and Γ ⊢ 𝑇 =:= 𝑥 .𝐿, then
1. Γ ⊢ 𝑑 : 𝑆 implies Γ ⊢ 𝜎𝑑 : 𝜎𝑆
2. Γ ⊢ 𝑡 : 𝑇 implies Γ ⊢ 𝜎𝑡 : 𝜎𝑇

Proof. By simultaneous induction on the derivations of Γ ⊢ 𝑑 : 𝑆 and Γ ⊢ 𝑡 : 𝑇 using Lemma 2.4.6.
We only show a few representative cases.

Case
Γ(𝑥) = 𝑇 𝑥

(Var)
Γ ⊢ 𝑥 : 𝑇 𝑥

We have 𝜎𝑥 = 𝑥 . By Lemma 2.4.6, Γ ⊢ 𝑇 𝑥
<: 𝜎𝑇 𝑥 and Sub finishes the case.

Case
Γ ⊢ 𝑆 ′ <: 𝑆 ′

(DTyp)
Γ ⊢ (𝐿 = 𝑆

′) : (𝐿 : 𝑆 ′ .. 𝑆 ′)

By Refl, Γ ⊢ 𝜎𝑆 ′ <: 𝜎𝑆 ′ and DTyp finishes the case.

Case
Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇 𝑥

2
(DFun)

Γ ⊢ (𝑚(𝑥 : 𝑇1) : 𝑇 𝑥
2 = 𝑡) : (𝑚(𝑥 : 𝑇1) : 𝑇 𝑥

2 )
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(IH 2.)
Γ, 𝑥 : 𝑇1 ⊢ 𝜎𝑡 : 𝜎𝑇 𝑥

2

(Lemma 2.4.6)
Γ, 𝑥 : 𝜎𝑇1 ⊢ 𝜎𝑇1 <: 𝑇1

(NarrowTp)
Γ, 𝑥 : 𝜎𝑇1 ⊢ 𝜎𝑡 : 𝜎𝑇 𝑥

2
(DFun)

⊢ (𝑚(𝑥 : 𝜎𝑇1) : 𝜎𝑇 𝑥
2 = 𝜎𝑡) : (𝑚(𝑥 : 𝜎𝑇1) : 𝜎𝑇 𝑥

2 )
■
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3 Featherweight Java (Scala-flavored)

In this chapter, we review the Featherweight Java (FJ) calculus [Igarashi, Pierce, and Wadler 2001].
We then develop a translation scheme from FJ into DOT and prove that it is type-preserving.

3.1 Syntax and semantics

Figure 3.1: FJ: Syntax

𝑥, 𝑦, 𝑧 Variable
𝐵, 𝐶, 𝐷, 𝐸 Class type
𝑓 , 𝑔 Class parameter
𝑚 Method name

Γ ⩴ Context
∅ | Γ, 𝑥 : 𝐶

𝐿 ⩴ Class declaration
class𝐶 (𝑓 : 𝐷) ◁ 𝐵(𝑔) {𝑀}

𝑀 ⩴ Method declaration
def𝑚(𝑥 : 𝐷) : 𝐷0 = 𝑒0

𝑒 ⩴ Expression
𝑥 variable
𝑒.𝑓 parameter access
𝑒0.𝑚(𝑒) method call
new𝐶 (𝑒) object

FJ models a single-class inheritance language where subtyping is defined by subclassing. It was
originally designed to be a proper subset of Java but it also happens to be a good match for the
semantics of Scala. To make this more obvious, we alter its syntax to resemble Scala.

Besides the syntax changes, the version of FJ we present here lacks support for casts. In principle,
they should be translatable into DOT using an approach similar to [League, Shao, and Trifonov
2002] but we consider them out of scope for this thesis.

An FJ program is a pair (𝐶𝑇, 𝑒) composed of a class table 𝐶𝑇 and an expression 𝑒 . The class
table maps class names 𝐶 to class declarations class𝐶 (𝑓 : 𝐷) ◁ 𝐵(𝑔) {𝑀} where,

• 𝐶 is the name of the class,

• 𝑓 : 𝐷 declares the names and types of the parameters accepted by the class constructor,
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Figure 3.2: FJ: Comparison of the original and Scala-flavored syntax

Original

class C ◁ Object {

A a;

C(A a) {

super(); this.a = a

}

}

class D ◁ C {

B b;

A(A a, B b) {

super(a); this.b = b;

}

F foo(E e) {

return new G(e).bar(this.b).f;

}

}

Scala-flavored

class C(a: A) ◁ Object {}

class D(a: A, b: B) ◁ C(a) {

def foo(e: E): F =

new G(e).bar(b).f

}

• 𝐵 is the parent class that 𝐶 extends (the special class name Object can be used here and
denotes the root of the class hierarchy),

• 𝑔 is the subset of the class parameters which are passed to the constructor of the parent
class,

• and 𝑀 is the list of methods defined in the class.

In turn, method declarations have the form def𝑚(𝑥 : 𝐷) : 𝐷0 = 𝑒0 where,

• 𝑚 is the name of the method,

• 𝑥 : 𝐷 declares the names and types of the parameters accepted by the method,

• 𝐷0 is the result type of the method,

• and 𝑒0 is the body of the method.

A valid expression is either,

• a reference to a variable 𝑥 in the environment,

• a constructor call new𝐶 (𝑒) which returns an object of type 𝐶 instantiated using class
parameters 𝑒 ,

• a method call 𝑒0.𝑚(𝑒) where the class type of the receiver 𝑒0 has a method 𝑚 which
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accepts arguments 𝑒 ,

• or a parameter access 𝑒.𝑓 where the class type of 𝑒 has a constructor parameter 𝑓 .

A well-typed program written in our calculus is almost, but not quite, valid Scala. For the
sake of brevity, we omit the val keyword in front of constructor parameters which is normally
needed to allow access to class parameters via the 𝑒.𝑓 syntax. We also write ◁ as a short-hand
for extends as in the original paper.

Figure 3.2 informally defines the mapping between the original syntax and our Scala-flavored
version. Although it may not look like it, all well-formed cast-less FJ programs can be expressed
in our syntax due to the restrictions imposed on well-formed classes by FJ. The subtyping and
typing rules in Figures 3.3 to 3.5 are adapted from the original paper to fit our syntax. As in the
original definitions, every class 𝐶 mentioned in a rule is assumed to be defined in the global
class table 𝐶𝑇 .

We intentionally omit the definition of evaluation rules. Instead, we give meaning to a well-
typed FJ program via a type-preserving translation into DOT defined in the next section.1 Since
DOT is sound [Rompf and Amin 2016, Definition 1], this indirectly establishes soundness for
our source calculus.

Figure 3.3: FJ: Subtyping rules and lookup functions

Subtyping 𝐶 <: 𝐷

𝐶 <: 𝐶 (S-Refl)

𝐶 <: 𝐷 𝐷 <: 𝐵

𝐶 <: 𝐵
(S-Trans)

class𝐶 ... ◁ 𝐵 ...

𝐶 <: 𝐵
(S-Class)

1It would be interesting to formally relate the traditional way FJ evaluation proceeds with the evaluation of
an FJ program translated into DOT, but the use of a store in the operational semantics of oopslaDOT makes this
non-trivial. The store-less version of DOT from [Amin 2016, § 3.5] might be more appropriate for this task.
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Figure 3.4: FJ: lookup functions

Value parameters lookup vparams(𝐶) ≔ 𝑓 : 𝐷

vparams(Object) ≔ ∅

class𝐶 (𝑓 : 𝐷) ...

vparams(𝐶) ≔ 𝑓 : 𝐷

Method names lookup mnames(𝐶) ≔ 𝑚

mnames(Object) ≔ ∅

class𝐶 ... ◁ 𝐵 {def𝑚𝐶 ...}
mnames(𝐵) =𝑚𝐵

𝑛 =
[︁
𝑚 ∈𝑚𝐶

|︁|︁𝑚 ∉ 𝑛
]︁

mnames(𝐶) ≔ 𝑚𝐵, 𝑛

Method type and body lookup
mtype(𝑚, 𝐶) ≔ (𝑥 : 𝐷) → 𝐷0

mbody(𝑚, 𝐶) ≔ 𝑒0

class𝐶 ... {𝑀}
def𝑚(𝑥 : 𝐷) : 𝐷0 = 𝑒0 ∈ 𝑀

mtype(𝑚, 𝐶) ≔ (𝑥 : 𝐷) → 𝐷0

mbody(𝑚, 𝐶) ≔ 𝑒0

(M-Class)

class𝐶 ... ◁ 𝐵 {𝑀} 𝑚 ... ∉ 𝑀

mtype(𝑚, 𝐶) ≔ mtype(𝑚, 𝐵)
mbody(𝑚, 𝐶) ≔ mbody(𝑚, 𝐵)

(M-Super)
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Figure 3.5: FJ: Typing rules

Expression typing Γ ⊢ 𝑒 : 𝐶

Γ(𝑥) = 𝐶
Γ ⊢ 𝑥 : 𝐶

(T-Var)

Γ ⊢ 𝑒0 : 𝐶 vparams(𝐶) = 𝑓 : 𝐷

Γ ⊢ 𝑒0.𝑓𝑖 : 𝐷𝑖

(T-Getter)

Γ ⊢ 𝑒0 : 𝐶 mtype(𝑚, 𝐶) = (𝑥 : 𝐷) → 𝐷0 Γ ⊢ 𝑒 : 𝐸 𝐸 <: 𝐷

Γ ⊢ 𝑒0.𝑚(𝑒) : 𝐷0

(T-Invk)

class𝐶 (𝑓 : 𝐷) Γ ⊢ 𝑒 : 𝐸 𝐸 <: 𝐷

Γ ⊢ new𝐶 (𝑒) : 𝐶
(T-New)

Method typing Γ ⊢𝑚 ok

𝐶 = Γ(this) class𝐶 ◁ 𝐵 ...
mtype(𝑚, 𝐶) = (𝑥 : 𝐷) → 𝐷0

mbody(𝑚, 𝐶) = 𝑒0
Γ, 𝑥 : 𝐷 ⊢ 𝑒0 : 𝐸0 𝐸0 <: 𝐷0

mtype(𝑚, 𝐵) defined implies mtype(𝑚, 𝐵) = mtype(𝑚, 𝐶)
Γ ⊢𝑚 ok

(T-Method)

Class typing ⊢ 𝐶 ok

class𝐶 (𝑔 : 𝐸, 𝑓 : 𝐷) ◁ 𝐵(𝑔) {def𝑚 ...}
vparams(𝐵) = 𝑔 : 𝐸 this : 𝐶 ⊢𝑚 ok

⊢ 𝐶 ok
(T-Class)

Class table typing ⊢ 𝐶𝑇 ok

𝐶 ∈ dom(𝐶𝑇 ) implies ⊢ 𝐶 ok
No inheritance cycle between the classes in 𝐶𝑇

⊢ 𝐶𝑇 ok
(T-CT)
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3.2 Translation
Our translation scheme is defined using three operators defined in Figures 3.6 and 3.7:

• |·| translates FJ types into DOT types and FJ terms into DOT terms.

• ⦇ · ⦈ translates lists of FJ declarations into one or more DOT declarations.

• If ⦇ · ⦈ returns a DOT declaration, then ⟦·⟧ is defined to return the type of the declaration,
for example since ⦇ 𝑓 : 𝐷 ⦈ ≔ (𝑓 () : |𝐷 | = 𝑓param) we have ⟦𝑓 : 𝐷⟧ = (𝑓 : |𝐷 |). If ⦇ · ⦈
returns multiple DOT declarations, then ⟦·⟧ returns the intersection of their types. For
convenience, we additionally define ⟦Object⟧ ≔ ⊤.

Figure 3.6: Translating FJ types and expressions to DOT

Type Translation |𝐶 | ≔ 𝑇
DOT

|Object| ≔ ct.Object

class𝐶 ... ◁ 𝐷 ...

|𝐶 | ≔ ct.𝐶

Expression Translation |𝑒 | ≔ 𝑡
DOT

|𝑥 | ≔ 𝑥

|𝑒.𝑓 | ≔ |𝑒 | .𝑓 ()

|𝑒0.𝑚(𝑒) | ≔ |𝑒0 | .𝑚( |𝑒 | )

|new Object| ≔ {_ ⇒}

|new𝐶 (𝑒) | ≔ ct.new𝐶 ( |𝑒 | )

We illustrate our translation scheme with an example. Given the class table 𝐶𝑇 ,

class B(obj: Object) ◁ Object {}

class C() ◁ Object {

def foo(): C = this

}

class D() ◁ C() {

def bar(b: B): Object = b.obj

}

we translate it to the object {ct ⇒ ⦇𝐶𝑇 ⦈} which expands to
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3.2 Translation

Figure 3.7: Translating FJ definitions to DOT

Getter Translation ⦇ 𝑓 : 𝐷 ⦈ ≔ 𝑑
DOT

⦇ 𝑓 : 𝐷 ⦈ ≔ 𝑓 () : |𝐷 | = 𝑓param

⦇ 𝑓 : 𝐷 ⦈ ≔ ⦇ 𝑓 : 𝐷 ⦈

Method Translation ⦇𝑚 ⦈𝐶 ≔ 𝑑
DOT

mtype(𝑚, 𝐶) = (𝑥 : 𝐷) → 𝐷0

mbody(𝑚, 𝐶) = 𝑒0
⦇𝑚 ⦈𝐶 ≔ 𝑚(𝑥 : |𝐷 |) : |𝐷0 | = |𝑒0 |

⦇𝑚 ⦈𝐶 ≔ ⦇𝑚 ⦈𝐶

Class Translation ⦇𝐶 ⦈ ≔ 𝑑
DOT

⦇𝐶 ⦈ ≔ ⦇ vparams(𝐶) ⦈, ⦇ mnames(𝐶) ⦈𝐶

Class Table Translation ⦇𝐶𝑇 ⦈ ≔ 𝑑
DOT

⦇∅ ⦈ ≔ (Object = ⊤)

𝐿𝐶 = class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑈 ) ◁ 𝐵 ...

⦇𝐿, 𝐿𝐶 ⦈ ≔ ⦇𝐿 ⦈,
(︂
𝐶 = ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧}

)︂
,(︂

new𝐶 (𝑓param : |𝐷 |) : |𝐶 | = {this ⇒ ⦇𝐶 ⦈}
)︂

Environment Translation |Γ | ≔ Γ
DOT

|∅| ≔ ct : ⟦𝐶𝑇⟧

vparams(𝐶) = 𝑓 : 𝐷

|Γ, this : 𝐶 | ≔ |Γ |, 𝑓param : |𝐷 |, this : ⟦𝐶⟧

𝑥 ≠ this

|Γ, 𝑥 : 𝐶 | ≔ |Γ |, 𝑥 : |𝐶 |
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{ct ⇒
Object = ⊤,
B = ct.Object ∧ {this ⇒ (obj() : ct.Object)},
newB(objparam : ct.Object) : ct.B = {this ⇒
obj() : ct.Object = objparam

},
C = ct.Object ∧ {this ⇒ (foo() : ct.C)},
newC() : ct.C = {this ⇒
foo() : ct.C = this

},
D = ct.C ∧ {this ⇒ (foo() : ct.C) ∧ (bar(b : ct.Object) : ct.C)},
newD() : ct.D = {this ⇒
foo() : ct.C = this, 𝑐ℎ
bar(b : ct.B) : ct.Object = b.obj()

}
}

When possible, a translated definition reuses the name of the original definition, but a class
parameters like obj above must be translated both into a parameter to the constructor method
newB and a method in the translated class body, so we name the constructor method parameter
objparam to avoid any ambiguity.

A well-typed FJ program,
(𝐶𝑇, 𝑒)

can be translated into a DOT expression well-typed in the empty context,

let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |

as established by Theorem 3.2.13.

3.2.1 Meta-theory
Every class 𝐶 we refer to is implicitly required to be defined in the global class table 𝐶𝑇 such
that ⊢ 𝐶𝑇 ok.

Lemma 3.2.1: Well-formed translation
1. |Γ | ⊢ |𝐶 |, ⟦𝐶⟧ wf
2. If (this : 𝐶) ∈ Γ then |Γ | ⊢ ⦇𝐶 ⦈ wf

Proof.

1. The only free variable that can appear in |𝐶 | or ⟦𝐶⟧ is ct which is always present in |Γ |.

2. Let vparams(𝐶) = 𝑓 : 𝐷 , then we have {𝑓param, this} ⊆ dom( |Γ |) which covers all addi-
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tional free variables that can appear in ⦇𝐶 ⦈ by inspection.

■

Theorem 3.2.2: Subtyping preservation

If 𝐶 <: 𝐵 and |Γ | defined then |Γ | ⊢ |𝐶 | <: |𝐵 |.

Proof. By induction on the derivation of 𝐶 <: 𝐵.

Case 𝐶 <: 𝐶 (S-Refl)

By Refl.

Case
class𝐶 ... ◁ 𝐵 ...

(S-Class)
𝐶 <: 𝐵

(Var)
|∅| ⊢ ct :! ⟦𝐶𝑇⟧

(Refl)
|∅| ⊢ ct.𝐵 <: ct.𝐵

(And11)
|∅| ⊢ ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧} <: ct.𝐵

(Typ)
|∅| ⊢ (𝐶 = ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧}) <: (𝐶 : ⊥ .. ct.𝐵)

(2.4.5)
|∅| ⊢ ⟦𝐶𝑇⟧ <: (𝐶 : ⊥ .. ct.𝐵)

(Sub)
|∅| ⊢ ct :! (𝐶 : ⊥ .. ct.𝐵)

(Sel1)
|Γ | ⊢ ct.𝐶 <: ct.𝐵

Case
𝐶 <: 𝐷 𝐷 <: 𝐵

(S-Trans)
𝐶 <: 𝐵

By the IH, |Γ | ⊢ |𝐶 | <: |𝐷 | and |Γ | ⊢ |𝐷 | <: |𝐵 |. Trans finishes the case.
■

Lemma 3.2.3
If |Γ | defined then |Γ | ⊢ |𝐶 | <: ⟦𝐶⟧

Proof. 𝐶 = Object follows by Top, otherwise we have |𝐶 | = ct.𝐶 and

(Bind1)
|Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: ⟦𝐶⟧

(And2)
|Γ | ⊢ ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧} <: ⟦𝐶⟧

(Trans, Sel1)
|Γ | ⊢ ct.𝐶 <: ⟦𝐶⟧

■
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Corollary 3.2.4: Class translation preserves value parameters and methods

• If vparams(𝐶) = 𝑓 : 𝐷 then |Γ | ⊢ |𝐶 | <: (𝑓 () : |𝐷 |).
• If mtype(𝑚, 𝐶) = (𝑥 : 𝐷) → 𝐷0 then |Γ | ⊢ |𝐶 | <: (𝑚(𝑥 : |𝐷 |) : |𝐷0 |).

Proof. By definition, ⟦𝐶⟧ = ⟦vparams(𝐶)⟧ ∧ ⟦mnames(𝐶)⟧𝐶 so this follows from the previous
lemma, transitivity and width subtyping. ■

Lemma 3.2.5
Given class𝐶 ... ◁ 𝐵 ... and |Γ | defined then |Γ | ⊢ ⟦𝐶⟧ <: ⟦𝐵⟧.

Proof. By definition, we want to show:

|Γ | ⊢ ⟦vparams(𝐶)⟧ ∧ ⟦mnames(𝐶)⟧𝐶 <: ⟦vparams(𝐵)⟧ ∧ ⟦mnames(𝐵)⟧𝐵

After proving the following claims, we can finish the case by depth subtyping.

Claim 1: |Γ | ⊢ ⟦vparams(𝐶)⟧ <: ⟦vparams(𝐵)⟧

⊢ 𝐶 ok implies that vparams(𝐶) = (vparams(𝐵), ...) so by definition, ⟦vparams(𝐶)⟧ =

⟦vparams(𝐵)⟧ ∧𝑇 for some 𝑇 and width subtyping finishes the claim.

Claim 2: |Γ | ⊢ ⟦mnames(𝐶)⟧𝐶 <: ⟦mnames(𝐵)⟧𝐵

By definition, mnames(𝐶) = (mnames(𝐵), ...) so ⟦mnames(𝐶)⟧𝐶 = ⟦mnames(𝐵)⟧𝐶 ∧𝑇 for
some 𝑇 and we only need to prove that |Γ | ⊢ ⟦𝑚⟧𝐶 <: ⟦𝑚⟧𝐵 for all 𝑚 ∈ mnames(𝐵). If
𝑚 ∈ mnames(𝐵) then either𝑚 ∉ 𝑀 or Γ ⊢𝑚 ok, in both cases this implies ⟦𝑚⟧𝐶 = ⟦𝑚⟧𝐵 .

■

Lemma 3.2.6
If |Γ | defined then |Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: |𝐶 |

Proof. Since ⊢ 𝐶 ok, we can have a sequence of class 𝐷 such that 𝐷1 = 𝐶 , 𝐷𝑛 = Object and
𝐷𝑖 <: 𝐷𝑖+1 derived by the rules S-Refl and S-Class for any 𝑖 . We prove by induction on the
length 𝑛 (≥ 1) of the sequence.

Case (𝑛 = 1)

By Top.
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Case class𝐶 ... ◁ 𝐵 ... (𝑛 ≥ 2)

By Sel1, |Γ | ⊢ ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧} <: ct.𝐶 . Hence,

(3.2.5, Weaken)
|Γ |, _ : ⟦𝐶⟧ ⊢ ⟦𝐶⟧ <: ⟦𝐵⟧

(BindX)
|Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: {this ⇒ ⟦𝐵⟧}

(IH)
|Γ | ⊢ {this ⇒ ⟦𝐵⟧} <: ct.𝐵

(Trans)
|Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: ct.𝐵

(And2, Refl)
|Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧}

(Trans)
|Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: ct.𝐶

■

At this point in our proof, it would be convenient if we could establish that |Γ | ⊢ ⟦𝐶⟧ <: |𝐶 |
to show that |Γ | ⊢ this : |𝐶 | by subsumption. This would follow from Lemma 3.2.6 if we had a
Bind2 rule symmetric to the existing Bind1 to prove |Γ | ⊢ ⟦𝐶⟧ <: {this ⇒ ⟦𝐶⟧}, but this rule
is missing from [Rompf and Amin 2016] as mentioned in Section 3 of the paper2:

“[…] Note as well that there is no Bind2 rule, symmetric to Bind1, which is another
kind of contractiveness restriction. We conjecture that these contractiveness restric-
tions could be lifted without breaking soundness, since we can always construct
explicit conversion functions that use rules VarPack and VarUnpack on proper
term bindings. However, removing these contractiveness restrictions would likely
require different and harder to mechanize proof techniques such as a coinductive
interpretation of subtyping.”

For our purposes, VarPack is indeed enough:

Lemma 3.2.7: this translation is type-preserving

If Γ ⊢ this : 𝐶 and |Γ | defined then |Γ | ⊢ this : |𝐶 |

Proof. By inversion of Γ ⊢ this : 𝐶 via T-Var, we must have Γ(this) = 𝐶 and so |Γ | (this) = ⟦𝐶⟧
by definition. Hence,

(Var)
|Γ | ⊢ this : ⟦𝐶⟧

(VarPack)
|Γ | ⊢ this : {this ⇒ ⟦𝐶⟧}

(3.2.6)
|Γ | ⊢ {this ⇒ ⟦𝐶⟧} <: |𝐶 |

(Sub)
|Γ | ⊢ this : |𝐶 |

■

Theorem 3.2.8: Typing translation is type-preserving

If Γ ⊢ 𝑒 : 𝐶 and |Γ | defined then |Γ | ⊢ |𝑒 | : |𝐶 |.
2Interestingly, this rule is derivable in gDOT ([Giarrusso et al. 2020, Figure 7]).
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Proof. By induction on the derivation of Γ ⊢ 𝑒 : 𝐶 .

Case
Γ(𝑥) = 𝐶

(T-Var)
Γ ⊢ 𝑥 : 𝐶

By definition, |Γ | ( |𝑥 |) = |Γ | (𝑥), and we can distinguish two sub-cases:
• If 𝑥 = this, then |Γ | (this) = ⟦𝐶⟧ by definition and Lemma 3.2.7 finishes the case.
• Otherwise, |Γ | (𝑥) = |𝐶 | and Var finishes the case.

Case
Γ ⊢ 𝑒0 : 𝐶 vparams(𝐶) = 𝑓 : 𝐷

(T-Getter)
Γ ⊢ 𝑒0.𝑓𝑖 : 𝐷𝑖

By the IH, |Γ | ⊢ |𝑒0 | : |𝐶 |. By Corollary 3.2.4 and Sub, |Γ | ⊢ |𝑒0 | : (𝑓𝑖 () : |𝐷𝑖 |). TApp finishes
the case.

Case
Γ ⊢ 𝑒0 : 𝐶 mtype(𝑚, 𝐶) = (𝑥 : 𝐷) → 𝐷0 Γ ⊢ 𝑒 : 𝐸 𝐸 <: 𝐷

(T-Invk)
Γ ⊢ 𝑒0.𝑚(𝑒) : 𝐷0

By the IH, |Γ | ⊢ |𝑒0 | : |𝐶 | and |Γ | ⊢ |𝑒 | : |𝐸 |. By Corollary 3.2.4 and Sub, |Γ | ⊢ |𝑒0 | : (𝑚(𝑥 : |𝐷 |) :
|𝐷0 |). TApp’ finishes the case since by Theorem 3.2.2, |Γ | ⊢ |𝐸 | <: |𝐷 | and so by Sub, |Γ | ⊢
|𝑒 | : |𝐷 |.

Case
class𝐶 (𝑓 : 𝐷) Γ ⊢ 𝑒 : 𝐸 𝐸 <: 𝐷

(T-New)
Γ ⊢ new𝐶 (𝑒) : 𝐶

By the IH, |Γ | ⊢ |𝑒 | : |𝐸 |. By Lemma 2.4.5, Sub and Var, |Γ | ⊢ ct : (new𝐶 (𝑓param : |𝐷 |) : |𝐶 |).
We can finish using TApp’ like in the previous case.

■

Lemma 3.2.9

Given class𝐶 (𝑓 : 𝐷) ◁ 𝐵 ..., Γ𝐶 = this : 𝐶 , and Γ𝐵 = this : 𝐵, then |Γ𝐵 | ⊢ 𝑡 : 𝑇 implies
|Γ𝐶 | ⊢ 𝑡 : 𝑇 .

Proof. Let vparams(𝐵) = 𝑔 : 𝐸. Then,

|Γ𝐵 | = |∅|, 𝑔param : |𝐸 |, this : ⟦𝐵⟧

By inversion of ⊢ 𝐶 ok via T-Class we must have 𝑓 : 𝐷 = 𝑔 : 𝐸, 𝑓 ′ : 𝐷 ′ and so

|Γ𝐶 | = |∅|, 𝑔param : |𝐸 |, 𝑓 ′param : |𝐷 ′ |, this : ⟦𝐶⟧
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Therefore,

|Γ | ⊢ 𝑡 : 𝑇

(3.2.5)
|∅| ⊢ ⟦𝐶⟧ <: ⟦𝐵⟧

(Weaken)
|∅|, 𝑔param : |𝐸 |, this : ⟦𝐶⟧ ⊢ ⟦𝐶⟧ <: ⟦𝐵⟧

(NarrowTp)
|∅|, 𝑔param : |𝐸 |, this : ⟦𝐶⟧ ⊢ 𝑡 : 𝑇

(WeakenTp)
|Γ𝐶 | ⊢ 𝑡 : 𝑇

■

Lemma 3.2.10: Method translation is well-typed

Given class𝐶 (...) ◁ 𝐵 ... {𝑀}, Γ = this : 𝐶 , mtype(𝑚, 𝐶) = (𝑥 : 𝐷) → 𝐷0 and
mbody(𝑚, 𝐶) = 𝑒0, then |Γ | ⊢ ⦇𝑚 ⦈𝐶 : ⟦𝑚⟧𝐶 .

Proof. By induction on the derivation of mtype(𝑚, 𝐶) and mbody(𝑚, 𝐶).

Case
def𝑚(𝑥 : 𝐷) : 𝐷0 = 𝑒0 ∈ 𝑀

(M-Class)
mtype(𝑚, 𝐶) ≔ (𝑥 : 𝐷) → 𝐷0

mbody(𝑚, 𝐶) ≔ 𝑒0

⊢ 𝐶𝑇 ok implies ⊢ 𝐶 ok which implies Γ ⊢𝑚 ok which in turn can be inverted to reveal,

Γ, 𝑥 : 𝐷 ⊢ 𝑒0 : 𝐸0
𝐸0 <: 𝐷0

Hence,

Γ, 𝑥 : 𝐷 ⊢ 𝑒0 : 𝐸0
(3.2.8)

|Γ, 𝑥 : 𝐷 | ⊢ |𝑒0 | : |𝐸0 |
𝐸0 <: 𝐷0

(3.2.2)
|Γ, 𝑥 : 𝐷 | ⊢ |𝐸0 | <: |𝐷0 |

(Sub, 3.2.2)
|Γ, 𝑥 : 𝐷 | ⊢ |𝑒0 | : |𝐷0 |

(DFun’)
|Γ | ⊢ ⦇𝑚 ⦈𝐶 : ⟦𝑚⟧𝐶

Case
𝑚 ... ∉ 𝑀

(M-Super)
mtype(𝑚, 𝐶) ≔ mtype(𝑚, 𝐵)
mbody(𝑚, 𝐶) ≔ mbody(𝑚, 𝐵)

By definition we have ⦇𝑚 ⦈𝐶 = ⦇𝑚 ⦈𝐵 and ⟦𝑚⟧𝐶 = ⟦𝑚⟧𝐵 . By the IH, |this : 𝐵 | ⊢ ⦇𝑚 ⦈𝐵 : ⟦𝑚⟧𝐵
so by Lemma 3.2.9 we have |Γ | ⊢ ⦇𝑚 ⦈𝐵 : ⟦𝑚⟧𝐵 which finishes the case since ⦇𝑚 ⦈𝐶 = ⦇𝑚 ⦈𝐵
and ⟦𝑚⟧𝐶 = ⟦𝑚⟧𝐵 by definition.

■
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Lemma 3.2.11: Class translation is well-typed

Given class𝐶 (𝑓 : 𝐷) ... then |∅|, 𝑓param : |𝐷 | ⊢ {this ⇒ ⦇𝐶 ⦈} : {this ⇒ ⟦𝐶⟧}

Proof. Let Γ = this : 𝐶 and note that |Γ | = |∅|, 𝑓param : |𝐷 |, this : ⟦𝐶⟧ by definition. By TNew,
we only need to prove the following claims.

Claim 1: |Γ | ⊢ ⦇ 𝑓 : 𝐷 ⦈ : ⟦𝑓 : 𝐷⟧ ∀(𝑓 : 𝐷) ∈ vparams(𝐶)

By Var.

Claim 2: |Γ | ⊢ ⦇𝑚 ⦈𝐶 : ⟦𝑚⟧𝐶 ∀𝑚 ∈ mnames(𝐶)

By Lemma 3.2.10.
■

Lemma 3.2.12: Class table translation is well-typed

∅ ⊢ {ct ⇒ ⦇𝐶𝑇 ⦈} : {ct ⇒ ⟦𝐶𝑇⟧}.

Proof. After proving the following claims for each class𝐶 (𝑓 : 𝐷) in𝐶𝑇 , we can finish the proof
by TNew.

Claim 1: |∅| ⊢ (𝐶 = {this ⇒ ⟦𝐶⟧}) : (𝐶 = {this ⇒ ⟦𝐶⟧})

By DTyp.

Claim 2: |∅| ⊢ (new𝐶 (𝑓param : |𝐷 |) : |𝐶 | = {this ⇒ ⦇𝐶 ⦈}) : (new𝐶 (𝑓param : |𝐷 |) : |𝐶 |)

Let Γ0 = |∅|, 𝑓param : |𝐷 |. Then,

(3.2.11)
Γ0 ⊢ {this ⇒ ⦇𝐶 ⦈} : {this ⇒ ⟦𝐶⟧}

(3.2.6)
|∅| ⊢ {this ⇒ ⟦𝐶⟧} <: |𝐶 |

(Weaken)
Γ0 ⊢ {this ⇒ ⟦𝐶⟧} <: |𝐶 |

(Sub)
Γ0 ⊢ {this ⇒ ⦇𝐶 ⦈} : |𝐶 |

and DFun’ finishes the claim.
■

Theorem 3.2.13: Program translation is type-preserving

If ∅ ⊢
FJ
𝑒 : 𝐶 then ∅ ⊢

DOT
let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 | : |𝐶 |.

36



3.2 Translation

Proof.

(3.2.12)
∅ ⊢ {ct ⇒ ⦇𝐶𝑇 ⦈} : {ct ⇒ ⟦𝐶𝑇⟧}

∅ ⊢ 𝑒 : 𝐶
(3.2.8)

ct : ⟦𝐶𝑇⟧ ⊢ |𝑒 | : |𝐶 |
(EnvPackTp)

ct : {ct ⇒ ⟦𝐶𝑇⟧} ⊢ |𝑒 | : |𝐶 |
(Let)

∅ ⊢ let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 | : |𝐶 |

■
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4 Featherweight Generic Java (Scala-
flavored)
In this chapter, we review the Featherweight Generic Java (FGJ) calculus [Igarashi, Pierce, and
Wadler 2001] which extends FJ by adding support for type parameters as they exist in Java.
As in the previous chapter, we develop a type-preserving translation scheme to DOT which
requires extending DOT with an extra subtyping rule And-Bind.

4.1 Syntax and semantics

Figure 4.1: FGJ: Syntax

𝑥, 𝑦, 𝑧 Variable
𝐵, 𝐶, 𝐷, 𝐸 Class name
𝑓 , 𝑔 Class parameter
𝑚 Method name
𝑋𝐶 Class variable
𝑋𝑚 Method variable
𝑋, 𝑌, 𝑍 ⩴ 𝑋𝐶 | 𝑋𝑚 Type variable
𝑁, 𝑃, 𝑄 ⩴ 𝐶 [𝑇 ] Non-variable
𝑆, 𝑇 , 𝑈 , 𝑉 ⩴ 𝑋 | 𝑁 Type

Γ ⩴ Context
∅ | Γ, 𝑥 : 𝑇 | Γ, 𝑋 <: 𝑁

𝐿 ⩴ Class declaration
class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑇 ) ◁ 𝑃 (𝑓 ) {𝑀}

𝑀 ⩴ Method declaration
def𝑚 [𝑋𝑚 <: 𝑁 ] (𝑥 : 𝑇 ) : 𝑇0 = 𝑒0

𝑒 ⩴ Expression
𝑥 variable
𝑒.𝑓 parameter access
𝑒0.𝑚 [𝑇 ] (𝑒) method call
new𝐶 [𝑇 ] (𝑒) object

𝜎, 𝜏 ⩴ [𝑇 /𝑋 ] Type substitution

Compared to FJ, an FGJ class or method declaration takes an additional type parameter clause
[𝑋 <: 𝑁 ], where 𝑋 is a list of type variable names that are accessible in the scope of the
definition. The only thing known about each type variable 𝑋𝑖 is its upper-bound 𝑁𝑖 , note that
forward references to type parameters such as [𝑋 <: 𝐶 [𝑌 ], 𝑌 <: Object] are allowed.

Constructor and method call syntax is similarly extended to pass a type argument clause [𝑇 ]
where each 𝑇𝑖 must be a subtype of the subtituted upper-bound [𝑇 /𝑋 ]𝑁𝑖 . Constructors now
return applied class types 𝐶 [𝑇 ].
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Chapter 4. Featherweight Generic Java (Scala-flavored)

FGJ also relaxes the definition of overriding to allow covariant overriding where the result type
of the overriding method can be a subtype of the result type of the overridden method.

The version of FGJ we present in Figures 4.1 to 4.3, 4.5 and 4.6 differs from [Igarashi, Pierce,
and Wadler 2001] in a few ways:

• As in Chapter 3, we drop casts and use Scala-like syntax.

• We introduce an additional lookup function tparams(𝐶) that returns the type parameters
of 𝐶 to reduce the amount of changes we will need to make when we extend the calculus
in Chapter 5.

• We distinguish between class type variables 𝑋𝐶 and method type variables 𝑋𝑚 in the
syntax so we can translate them differently in Figure 4.7.

• We use a single context Γ to store both term and type variables whereas the original
presentation used a separate context Δ for type variables instead. This simplifies our
translation since DOT only has one context.

• Our definition of method overriding in Figure 4.4 is more expressive than the original
one1 as it takes into account the environment Γ containing the class type variables. This
is needed to typecheck the following class table:

class A

class Base { def foo(): A = ... }

class Sub[S <: A] ◁ Base { def foo(): S = ... }

The equivalent Java code is valid and yet Sub is not well-formed in [Igarashi, Pierce, and
Wadler 2001, Figure 6] because the type parameter S <: A is not part of the environment
when the override check is done.

1However, unlike the original definition, we require that the names of the parameters of the overriding method
match the names used in the overridden method to simplify the translation.
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4.1 Syntax and semantics

Figure 4.2: FGJ: Subtyping

Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ 𝑆 <: 𝑆 (GS-Refl)

Γ(𝑋 ) = 𝑁
Γ ⊢ 𝑋 <: 𝑁

(GS-Var)

class𝐶 [𝑋 <: 𝑁 ] (...) ◁ 𝑃 ...

Γ ⊢ 𝐶 [𝑇 ] <: [𝑇 /𝑋 ]𝑃
(GS-Class)

Γ ⊢ 𝑆 <: 𝑈 Γ ⊢ 𝑈 <: 𝑇

Γ ⊢ 𝑆 <: 𝑇
(GS-Trans)

Figure 4.3: FGJ: Well-formedness

Well-formed type Γ ⊢ 𝑇 wf

Γ ⊢ Object wf (WF-Object)

𝑋 ∈ dom(Γ)
Γ ⊢ 𝑋 wf

(WF-Var)

tparams(𝐶) = 𝑋 <: 𝑁 𝜎 = [𝑇 /𝑋 ]
Γ ⊢ 𝑇 wf Γ ⊢ 𝑇 <: 𝜎𝑁

Γ ⊢ 𝐶 [𝑇 ] wf
(WF-Class)

Well-formed environment Γ wf

∅ wf

Γ, 𝑋 <: 𝑁 ⊢ 𝑁 wf

Γ, 𝑋 <: 𝑁 wf

Γ ⊢ 𝑇 wf

Γ, 𝑥 : 𝑇 wf
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Figure 4.4: FGJ: Overriding

𝑚 in 𝑁 overrides𝑚 in 𝑃 overrideΓ (𝑚, 𝑁, 𝑃)

mtype(𝑚, 𝑁 )= [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈

mtype(𝑚, 𝑃) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑉

Γ, 𝑌 <: 𝑃 ⊢ 𝑈 <: 𝑉

overrideΓ (𝑚, 𝑁, 𝑃)
(OV-Present)

mtype(𝑚, 𝑁 ) defined
mtype(𝑚, 𝑃) undefined

overrideΓ (𝑚, 𝑁, 𝑃)
(OV-Absent)
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4.1 Syntax and semantics

Figure 4.5: FGJ: Lookup functions

Non-variable upper bound of type boundΓ (𝑇 ) ≔ 𝑁

boundΓ (𝑋 ) ≔ Γ(𝑋 ) (B-Var)

boundΓ (𝑁 ) ≔ 𝑁 (B-Class)

Type parameters lookup tparams(𝐶) ≔ 𝑋 <: 𝑁

class𝐶 [𝑋 <: 𝑁 ] ...
tparams(𝐶) ≔ 𝑋 <: 𝑁

Value parameters lookup vparams(𝑁 ) ≔ 𝑓 : 𝑇

vparams(Object) ≔ ∅ (G-Object)

class𝐶 [𝑋 <: 𝑁 ] (𝑓 : 𝑈 ) ... 𝜎 = [𝑆/𝑋 ]

vparams(𝐶 [𝑇 ]) ≔ 𝑓 : 𝜎𝑈
(G-Class)

Method names lookup mnames(𝐶) ≔ 𝑚

mnames(Object) ≔ ∅

class𝐶 ... ◁ 𝐵 {def𝑚𝐶 ...}
mnames(𝐵) =𝑚𝐵

𝑛 =
[︁
𝑚 ∈𝑚𝐶

|︁|︁𝑚 ∉ 𝑛
]︁

mnames(𝐶) ≔ 𝑚𝐵, 𝑛

Method type and body lookup mtype(𝑚, 𝑁 ) ≔ [𝑌 <: 𝑃] → (𝑥 : 𝑇 ) → 𝑇0

mbody(𝑚, 𝑁 ) ≔ 𝑒0

class𝐶 [𝑋 <: 𝑁 ] ... {𝑀} 𝜎 = [𝑇 /𝑋 ]
(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇 ) : 𝑇0 = 𝑒0) ∈ 𝑀

mtype(𝑚, 𝐶 [𝑇 ]) ≔ [𝑌 <: 𝜎𝑃] → (𝑥 : 𝜎𝑇 ) → 𝜎𝑇0)
mbody(𝑚, 𝐶 [𝑇 ]) ≔ 𝜎𝑒0

(GM-Class)

class𝐶 [𝑋 <: 𝑁 ] (...) ◁ 𝑃 {𝑀} 𝜎 = [𝑇 /𝑋 ]
(def𝑚 ...) ∉ 𝑀

mtype(𝑚, 𝐶 [𝑇 ]) ≔ mtype(𝑚, 𝜎𝑃)
mbody(𝑚, 𝐶 [𝑇 ]) ≔ mbody(𝑚, 𝜎𝑃)

(GM-Super)
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Figure 4.6: FGJ: Typing rules

Expression typing Γ ⊢ 𝑒 : 𝑇

Γ(𝑥) = 𝑇
Γ ⊢ 𝑥 : 𝑇

(GT-Var)

Γ ⊢ 𝑒0 : 𝑇0 vparams(boundΓ (𝑇0)) = 𝑓 : 𝑇

Γ ⊢ 𝑒0.𝑓𝑖 : 𝑇𝑖
(GT-Getter)

Γ ⊢ 𝑒0 : 𝑇0 mtype(𝑚, boundΓ (𝑇0)) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

𝜎 = [𝑉 /𝑌 ] Γ ⊢ 𝑉 wf, 𝑉 <: 𝜎𝑃, 𝑒 : 𝑆, 𝑆 <: 𝜎𝑈

Γ ⊢ 𝑒0.𝑚[𝑉 ] (𝑒) : 𝑇0
(GT-Invk)

Γ ⊢ 𝑁 wf vparams(𝑁 ) = 𝑓 : 𝑈 Γ ⊢ 𝑒 : 𝑆, 𝑆 <: 𝑈

Γ ⊢ new𝑁 (𝑒) : 𝑁
(GT-New)

Method typing Γ ⊢𝑚 ok

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
class𝐶 ... ◁𝑄

mtype(𝑚, 𝐶 [𝑋 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0 mbody(𝑚, 𝐶 [𝑋 ]) = 𝑒0
Γ, 𝑌 <: 𝑃 ⊢ 𝑈 , 𝑈0, 𝑃 wf

Γ, 𝑌 <: 𝑃, 𝑥 : 𝑈 ⊢ 𝑒0 : 𝐸0, 𝐸0 <: 𝑈0

overrideΓ (𝑚, 𝐶 [𝑋 ], 𝑄)
Γ ⊢𝑚 ok

(GT-Method)

Class typing ⊢ 𝐶 ok

class𝐶 [𝑋 <: 𝑁 ] (𝑔 : 𝑈 , 𝑓 : 𝑇 ) ◁ 𝑃 (𝑔) {def𝑚 ...}
Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]

Γ ⊢ 𝑁, 𝑈 , 𝑇 , 𝑃 wf vparams(𝑃) = 𝑔 : 𝑈 Γ ⊢𝑚 ok

⊢ 𝐶 ok
(GT-Class)

Class table typing ⊢ 𝐶𝑇 ok

𝐶 ∈ dom(𝐶𝑇 ) implies ⊢ 𝐶 ok
No inheritance cycle between the classes in 𝐶𝑇

⊢ 𝐶𝑇 ok
(GT-CT)
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4.2 Meta-theory

4.2 Meta-theory

Lemma 4.2.1: Correctness of bound
If boundΓ (𝑆) = 𝑁 , then Γ ⊢ 𝑆 <: 𝑁 .

Proof. By induction on the derivation of boundΓ (𝑆). ■

The two following lemmas are partially adapted from [Igarashi, Pierce, and Wadler 2001, Lemmas
A.2.5 and A.2.6].

Lemma 4.2.2: Substitution preserves subtyping

Let Γ1 = 𝑋 <: 𝑁 . If Γ1 ⊢ 𝑆 <: 𝑈 and Γ2 ⊢ 𝑇 <: 𝜎𝑁 where 𝜎 = [𝑇 /𝑋 ] then Γ2 ⊢ 𝜎𝑆 <: 𝜎𝑈 .

Proof. By induction on the derivation of Γ1 ⊢ 𝑆 <: 𝑈 .

Case Γ1 ⊢ 𝑆 <: 𝑆 (GS-Refl)

By GS-Refl, Γ2 ⊢ 𝜎𝑆 <: 𝜎𝑆 .

Case
Γ1(𝑍 ) = 𝑃

(GS-Var)
Γ1 ⊢ 𝑍 <: 𝑃

Since 𝑍 ∈ 𝑋 and 𝜎𝑋 = 𝑇 this follows from the premise Γ2 ⊢ 𝑇 <: 𝜎𝑁 .

Case
class𝐶 [𝑍 <: 𝑄] (...) ◁ 𝑃 ...

(GS-Class)
Γ1 ⊢ 𝐶 [𝑉 ] <: [𝑉 /𝑍 ]𝑃

By inversion of GT-Class, 𝑍 <: 𝑄 ⊢ 𝑃 wf, so 𝑃 does not include any 𝑋 as a free variable and
therefore 𝜎 [𝑉 /𝑍 ]𝑃 = [𝜎𝑉 /𝑍 ]𝑃 . By GT-Class, Γ2 ⊢ 𝐶 [𝜎𝑉 ] <: [𝜎𝑉 /𝑍 ]𝑃 which completes the
case.

Case
Γ1 ⊢ 𝑆 <: 𝑉 Γ1 ⊢ 𝑉 <: 𝑈

(GS-Trans)
Γ1 ⊢ 𝑆 <: 𝑈

By the IH, Γ2 ⊢ 𝜎𝑆 <: 𝜎𝑉 , 𝜎𝑉 <: 𝜎𝑈 and GS-Trans completes the case.
■

Lemma 4.2.3: Substitution preserves well-formedness

Let Γ1 = 𝑋 <: 𝑁 . If Γ1 ⊢ 𝑆 wf, Γ2 ⊢ 𝑇 wf and Γ2 ⊢ 𝑇 <: 𝜎𝑁 where 𝜎 = [𝑇 /𝑋 ] then
Γ2 ⊢ 𝜎𝑆 wf.

Proof. By induction on the derivation of Γ1 ⊢ 𝑆 wf. Case WF-Object is trivial.
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Case
𝑜𝑍 ∈ dom(Γ1)

(WF-Var)
Γ1 ⊢ 𝑍 wf

Since 𝑍 ∈ 𝑋 and 𝜎𝑋 = 𝑇 this follows from the premise Γ2 ⊢ 𝑇 wf.

Case
class𝐶 [𝑍 <: 𝑄] ◁ 𝑃 ... 𝜎

′
= [𝑉 /𝑍 ] Γ1 ⊢ 𝑉 wf Γ1 ⊢ 𝑉 <: 𝜎 ′𝑄

(WF-Class)
Γ2 ⊢ 𝐶 [𝑉 ] wf

By Lemma 4.2.2, Γ2 ⊢ 𝜎𝑉 <: 𝜎 (𝜎 ′𝑄). By inversion of GT-Class, 𝑍 <: 𝑄 ⊢ 𝑄 wf, so none of the
𝑄 include any 𝑋 as a free variable and therefore 𝜎 (𝜎 ′𝑄) = (𝜎𝜎 ′)𝑄 . Since Γ2 ⊢ 𝜎𝑉 wf by the
IH and 𝜎𝜎 ′ = [𝜎𝑉 /𝑍 ], we can conclude that Γ2 ⊢ 𝐶 [𝜎𝑉 ] wf by WF-Class.

■

Lemma 4.2.4
If Γ wf, Γ ⊢ 𝑆 wf and Γ ⊢ 𝑆 <: 𝑇 , then Γ ⊢ 𝑇 wf.

Proof. By induction on the derivation of Γ ⊢ 𝑆 <: 𝑇 , case GS-Refl is trivial.

Case
Γ(𝑋 ) = 𝑁

(GS-Var)
Γ ⊢ 𝑋 <: 𝑁

Γ wf implies Γ ⊢ 𝑁 wf.

Case
class𝐶 [𝑋 <: 𝑁 ] (...) ◁ 𝑃 ... 𝜎 = [𝑇 /𝑋 ]

(GS-Class)
Γ ⊢ 𝐶 [𝑇 ] <: 𝜎𝑃

By inversion of Γ ⊢ 𝐶 [𝑇 ] wf via WF-Class, Γ ⊢ 𝑇 wf and Γ ⊢ 𝑇 <: 𝜎𝑁 . By inversion of ⊢ 𝐶 ok
via GT-Class, 𝑋 <: 𝑁 ⊢ 𝑃 wf. So by Lemma 4.2.3, Γ ⊢ 𝜎𝑃 wf.

Case
Γ ⊢ 𝑆 <: 𝑈 Γ ⊢ 𝑈 <: 𝑇

(GS-Trans)
Γ ⊢ 𝑆 <: 𝑇

By the IH, Γ ⊢ 𝑈 wf so by the IH again Γ ⊢ 𝑇 wf.
■

4.3 Translation
As in Section 3.2, our translation scheme is defined using |·|, ⦇ · ⦈ and ⟦·⟧.

Expression translation is now parameterized by the context Γ, this is necessary to translate
type arguments in method applications, although in practice this wouldn’t be needed if we used
de Bruijn indices to represent method type variables2 like the Scala 3 compiler.

2But not to represent class type variables which are assumed to be globally unique by our translation.
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4.3 Translation

A well-typed FJ program,
(𝐶𝑇, 𝑒)

can be translated into a DOT expression well-typed in the empty context,

let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |∅

but before we can establish this in Theorem 3.2.13 we’ll need to augment DOT with an extra
subtyping rule.

Figure 4.7: Translating FGJ types and expressions to DOT

Type Translation |𝑇 | ≔ 𝑇
DOT

|Object| ≔ ct.Object (TR-Obj)

|𝑋𝐶 | ≔ this.𝑋𝐶 (TR-CVar)

|𝑋𝑚 | ≔ mtag.𝑋𝑚 (TR-MVar)

tparams(𝐶) = 𝑋 <: ...

|𝐶 [𝑇 ] | ≔ ct.𝐶 ∧ {_ ⇒ 𝑋 = |𝑇 |}
(TR-Class)

Type Parameter Clause Translation |𝑋 <: 𝑁 | ≔ 𝑇
DOT

|𝑋𝐶 <: 𝑁 | ≔ {this ⇒ 𝑋𝐶 : ⊥ .. |𝑁 |}

|𝑋𝑚 <: 𝑁 | ≔ {mtag ⇒ 𝑋𝑚 : ⊥ .. |𝑁 |}

Expression Translation |𝑒 |Γ ≔ 𝑡
DOT

|𝑥 |Γ ≔ 𝑥

|𝑒0.𝑓 |Γ ≔ |𝑒0 |Γ .𝑓 ()

𝑥mtag is fresh Γ ⊢ 𝑒0 : 𝑇0
mtype(𝑚, boundΓ (𝑇0)) = [𝑌 <: 𝑃] → ...

|𝑒0.𝑚[𝑉 ] (𝑒) |Γ ≔ let 𝑥mtag = {_ ⇒ 𝑌 = |𝑉 |} in |𝑒0 |Γ .𝑚(𝑥mtag, |𝑒 |Γ)

|new Object|Γ ≔ {_ ⇒}

𝑥ctag is fresh tparams(𝐶) = 𝑋 <: ...

|new𝐶 [𝑉 ] (𝑒) |Γ ≔ let 𝑥ctag = {_ ⇒ 𝑋 = |𝑉 |} in ct.new𝐶 (𝑥ctag, |𝑒 |Γ)
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Figure 4.8: Translating FGJ definitions to DOT

Getter Translation ⦇ 𝑓 : 𝑇 ⦈ ≔ 𝑑
DOT

⦇ 𝑓 : 𝑇 ⦈ ≔ 𝑓 () : |𝑇 | = 𝑓param

Method Translation ⦇𝑚 ⦈𝐶 ≔ 𝑑
DOT

class𝐶 [𝑋 <: 𝑁 ] ... Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
mtype(𝑚, 𝐶 [𝑋 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

mbody(𝑚, 𝐶 [𝑋 ]) = 𝑒0
⦇𝑚 ⦈𝐶 ≔ 𝑚(mtag : |𝑌 <: 𝑃 |, 𝑥 : |𝑈 |) : |𝑈0 | = |𝑒0 |Γ,𝑌<:𝑃,𝑥 :𝑈

Class Translation ⦇𝐶 ⦈ ≔ 𝑑
DOT

class𝐶 [𝑋 <: 𝑁 ] ... baseArgs(𝐶) =
⋀︂
𝑍 = 𝑆

⦇𝐶 ⦈ ≔ ⦇ vparams(𝐶 [𝑋 ]) ⦈, ⦇ mnames(𝐶) ⦈𝐶 , 𝑍 = |𝑆 |
⦇𝐶 ⦈𝑇 ≔ ⦇𝐶 ⦈, 𝑋 = 𝑇

Class Table Translation ⦇𝐶𝑇 ⦈ ≔ 𝑑
DOT

⦇∅ ⦈ ≔ (Object = ⊤)

𝐿𝐶 = class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑈 ) ◁ 𝐵 ... 𝜏 = [ctag.𝑋𝐶/|𝑋𝐶 |]

⦇𝐿, 𝐿𝐶 ⦈ ≔ ⦇𝐿 ⦈, 𝐶 = ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧, 𝑋𝐶 : ⊥ .. |𝑁 |},
new𝐶 (ctag : |𝑋𝐶 <: 𝑁 |, 𝑓param : 𝜏 |𝑈 |) : 𝜏 |𝐶 [𝑋𝐶 ] | = {this ⇒ ⦇𝐶 ⦈𝜏 |𝑋𝐶 |}

Environment Translation |Γ | ≔ Γ
DOT

|∅| ≔ ct : ⟦𝐶𝑇⟧ (E-Empty)

|Γ, 𝑋𝑚 <: 𝑁 | ≔ |Γ |, mtag : |𝑋𝑚 <: 𝑁 | (E-MVar)

tparams(𝐶) = 𝑋𝐶 <: 𝑁

|𝑋𝐶 <: 𝑁, this : 𝐶 [𝑋𝐶 ] | ≔ |∅|, ctag : |𝑋𝐶 <: 𝑁 |, this : ⟦𝐶⟧ctag.𝑋
(E-This)

𝑥 ≠ this

|Γ, 𝑥 : 𝑇 | ≔ |Γ |, 𝑥 : |𝑇 |
(E-Var)

Arguments of Base Types baseArgs(𝐶) ≔ 𝑇
DOT

baseArgs(Object) ≔ ⊤

class𝐶 ... ◁ 𝐵 [𝑆] ... tparams(𝐵) = 𝑋 <: ...

baseArgs(𝐶) ≔
(︂⋀︂

𝑋 = |𝑆 |
)︂
∧ baseArgs(𝐵)
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4.3.1 Required addition to DOT
Consider the following class table:

class C[X] extends Object

class D[Y] extends C[Y]

Then the environment translation as defined by Figure 4.8 will be

|∅| = ct : (Object = ⊤) ∧
(𝐶 = ct.Object ∧ {this ⇒ 𝑋 : ⊥ .. ⊤}) ∧ ...
(𝐷 = ct.𝐶 ∧ {this ⇒ 𝑋 = this.𝑌 , 𝑌 : ⊥ .. ⊤}) ∧ ...

It is easy to see that ∅ ⊢ 𝐷 [Object] <: 𝐶 [Object], therefore if subtyping preservation holds,
we should be able to establish that |∅| ⊢ |𝐷 [Object] | <: |𝐶 [Object] |. While it is easy to show
that |∅| ⊢ ct.𝐷 <: ct.𝐶 ∧ {this ⇒ 𝑋 = this.𝑌 } via Sel1, we get stuck pretty quickly after that:

(???)
|∅| ⊢ {this ⇒ 𝑋 = this.𝑌 } ∧ {this ⇒ 𝑌 = ⊤} <: {this ⇒ 𝑋 = ⊤}

(2.4.5)
|∅| ⊢ ct.𝐶 ∧ {this ⇒ 𝑋 = this.𝑌 } ∧ {this ⇒ 𝑌 = ⊤} <: ct.𝐶 ∧ {this ⇒ 𝑋 = ⊤}

(Trans, Sel1)
|∅| ⊢ ct.𝐷 ∧ {this ⇒ 𝑌 = ⊤} <: ct.𝐶 ∧ {this ⇒ 𝑋 = ⊤}

Intuitively, this subtyping relation should be true: if 𝑋 is equal to 𝑌 and 𝑌 is equal to ⊤, then 𝑋
is equal to ⊤, but there is no existing subtyping rule which would let us establish that (BindX is
close but it only works at the top-level). To remedy this predicament, we propose adding the
following axiom to DOT:

Γ ⊢ {𝑧 ⇒ 𝑆} ∧ {𝑧 ⇒ 𝑇 } <: {𝑧 ⇒ 𝑆 ∧𝑇 } (And-Bind)

Combined with BindX, this solves our problem:

(Sub, Var)
|∅|, this : ... ∧ (𝑌 = ⊤) ⊢ this :! (𝑌 = ⊤)

(Sel2)
|∅|, this : ... ∧ (𝑌 = ⊤) ⊢ ⊤ <: this.𝑌

(Trans, Typ)
|∅|, this : ... ∧ (𝑌 = ⊤) ⊢ (𝑋 = this.𝑌 ) ∧ ... <: (𝑋 = ⊤)

(BindX)
|∅| ⊢ {this ⇒ 𝑋 = this.𝑌 , 𝑌 = ⊤} <: {this ⇒ 𝑋 = ⊤}

(Trans, And-Bind)
|∅| ⊢ {this ⇒ 𝑋 = this.𝑌 } ∧ {this ⇒ 𝑌 = ⊤} <: {this ⇒ 𝑋 = ⊤}

Theorem 4.3.1
oopslaDOT extended with And-Bind is sound.

Proof. The Coq mechanization of oopslaDOT is available at https://oopsla16.namin.net. The
calculus is defined in dot.v and two soundness proofs using different techniques but proving
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the same theorem are provided in dot_soundness.v and dot_soundness_alt.v respectively.
In [Rompf and Amin 2016], the main proof is described in Section 6.1 to 6.5 and the alternative
proof is described in Section 6.6. In practice, we found the alternative proof easier to work with
and we extended it with And-Bind in
https://github.com/smarter/minidot/commit/527762074f74df09b0a6241bafb1202ba92a5ebf. ■

Alternative translation scheme

Recall that when comparing oopslaDOT against wfDOT in Chapter 2, we chose oopslaDOT
primarily because of its inclusion of subtyping rules involving recursive types. Indeed, in the
example above we relied on BindX to establish subtyping preservation for ∅ ⊢ 𝐷 [Object] <:
𝐶 [Object]. But one might wonder if this is just an artifact of the translation scheme we chose
in Figure 4.7. Could we design an alternative type translation function that removes the need
for such rules? The answer is yes, but as usual there are trade-offs involved. If we replace
TR-Class by

class𝐶 [𝑋 <: ...] (...) ◁ 𝐵 [𝑈 ] ... 𝜎 = [𝑇 /𝑋 ]

|𝐶 [𝑇 ] | ≔ ct.𝐶 ∧ {_ ⇒ 𝑋 = |𝑇 |} ∧ |𝐵 [𝜎𝑈 ] |
(TR-ClassAlt)

Then subtyping preservation becomes almost trivial. In our previous example, we would have
|𝐷 [Object] | = ...∧ |𝐶 [Object] | and thus |∅| ⊢ |𝐷 [Object] | <: |𝐶 [Object] | would simply follow
by width subtyping. The catch is that TR-ClassAlt is not applicable to all valid FGJ class
hierarchies. For example given,

class B[X] ◁ Object

class C ◁ B[C]

Then the expansion of |𝐶 | using TR-ClassAlt is non-terminating:

|𝐶 | = ct.𝐶 ∧ |𝐵 [𝐶] |

|𝐵 [𝐶] | = ct.𝐵 ∧
(︂
𝑋𝐵 = |𝐶 |

)︂
∧ |Object|

Indirect cycles are also problematic, which rule out a simple syntactic check:

class B[X] ◁ Object

class D ◁ B[E]

class E ◁ D

|𝐸 | = |𝐷 | ∧ ct.𝐸

|𝐷 | = |𝐵 [𝐸] | ∧ ct.𝐷

|𝐵 [𝐸] | = |Object| ∧ ct.𝐵 ∧
(︂
𝑋𝐵 = |𝐸 |

)︂
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To safely use TR-ClassAlt we would need to disallow all class hierarchies where a type param-
eter of a base type of a class refers back to the class itself. This can be accomplished by a more
strict well-formedness check for classes:

class𝐶 [𝑋 <: 𝑁 ] ◁ 𝑃 ... 𝜎 = [𝑇 /𝑋 ]
Γ ⊢ 𝑇 wf Γ ⊢ 𝜎𝑃 wf Γ ⊢ 𝑇 <: 𝜎𝑁

Γ ⊢ 𝐶 [𝑇 ] wf
(WF-ClassAlt)

We dub FGJ− (“FGJ minus”) the calculus obtained by replacing WF-Class by WF-ClassAlt in
FGJ.

Conjecture 4.3.2

If we replace TR-Class by TR-ClassAlt then there exists a type-preserving translation
from FGJ− to wfDOT.

Proof sketch. While there are uses of Bind1 and BindX in our proof which are unrelated to
subtyping preservation, we conjecture that these uses are inessential and could be replaced
by sufficiently creative uses of typing rules like And-I as in [Amin, Grütter, et al. 2016, § 5.2]
(which might make the proof more complex). In particular, note that Lemma 2.4.6 relies on
BindX and would have to be replaced by an alternative lemma, perhaps of the form “Given
𝜎 = [𝑇 /𝑥 .𝐿] and Γ ⊢ 𝑇 =:= 𝑥 .𝐿, if Γ ⊢ 𝑈 wf and Γ ⊢ 𝑡 :(!) 𝑈 then Γ ⊢ 𝑡 :(!) 𝜎𝑈 ”. ♦

We will not study FGJ− in more detail because it is not expressive enough to encode F-bounded
polymorphism [Canning et al. 1989; Greenman, Muehlboeck, and Tate 2014] which is commonly
used in the Java standard library (e.g., with java.lang.Comparable) and therefore important
for Scala to support.

4.3.2 Meta-theory
Like in the previous chapter, we’d like to relate FGJ judgments in an environment Γ with DOT
judgments in the translated environment |Γ |, but |Γ | needs to account for implementation details
of our constructor translation which makes it inconvenient to work with. In particular, the FGJ
equivalent of Lemma 3.2.9 does not hold because of the presence of ctag in the environment.

To remedy this, we introduce an environment entailment judgment Γ ⊩Δ such that Γ ⊩|Γ | and
we generalize our theorems to apply to all Δ such that Γ ⊩Δ. This lets us use Theorem 4.3.19 in
place of Lemma 3.2.9. It is possible that a different environment translation |Γ | could alleviate
the need for environment entailement but we were not able to come up with a satisfying
alternative.
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Definition 4.3.3: Environment entailment

Γ
FGJ
⊩Δ

DOT

∅ ⊩ct : ⟦𝐶𝑇⟧, Δ (EE-Empty)

Γ′ ⊩Δ

Δ ⊢ |𝑋 | <: |𝑁 |
Γ′, 𝑋 <: 𝑁 ⊩Δ

(EE-Typs)

tparams(𝐶) = 𝑋 <: 𝑁
𝑋 <: 𝑁 ⊩Δ′

, this : 𝑇
Δ′
, this : 𝑇 ⊢ this :(!) ⟦𝐶⟧ |𝑋 |

𝑋 <: 𝑁, this : 𝐶 [𝑋 ] ⊩Δ′
, this : 𝑇, Δ′′ (EE-This)

Γ′ ⊩Δ′
𝑥 ≠ this

Γ′, 𝑥 : 𝑇 ⊩Δ′
, 𝑥 : |𝑇 |, Δ′′ (EE-Var)

Theorem 4.3.4: Environment translation conforms to entailment
If |Γ | wf then Γ ⊩|Γ |.

Proof. By structural induction on Γ.

Case Γ = ∅

By EE-Empty.

Case Γ = Γ′, 𝑋 <: 𝑁

By inversion of |Γ | via E-MVar, we must have 𝑋 = 𝑋𝑚 and |𝑋𝑚 | = mtag.𝑋𝑚 . Hence,

(IH)
Γ′ ⊩|Γ′ |

(Var)
|Γ′, 𝑋𝑚 <: 𝑁 | ⊢ mtag :! |𝑋𝑚 <: 𝑁 |

(Sub, VarUnpack)
|Γ′, 𝑋𝑚 <: 𝑁 | ⊢ mtag :! (𝑋𝑚 : ⊥ .. |𝑁 |)

(Sel1)
|Γ′, 𝑋𝑚 <: 𝑁 | ⊢ |𝑋𝑚 | <: |𝑁 |

(EE-Typs)
Γ′, 𝑋𝑚 <: 𝑁 ⊩|Γ′, 𝑋𝑚 <: 𝑁 |

Case Γ = Γ′, this : 𝑇

52



4.3 Translation

By inversion of |Γ | via E-This we must have Γ′ = 𝑋𝐶 <: 𝑁 and 𝑇 = 𝐶 [𝑋𝐶 ]. We have,

(Var)
|Γ | ⊢ this :! ⟦𝐶⟧ctag.𝑋

(2.4.5)
|Γ | ⊢ this :! (𝑋𝑖 = ctag.𝑋𝑖)

(Sel1, Sel2)
|Γ | ⊢ ctag.𝑋𝑖 =:= |𝑋𝑖 |

Let 𝜏 = [ctag.𝑋/this.𝑋 ]. Then,

(Var)
|Γ | [ctag] ⊢ ctag :! |𝑋 <: 𝑁 |

(Sub, VarUnpack)
|Γ | [ctag] ⊢ ctag :! (𝑋𝑖 : ⊥ .. 𝜏 |𝑁𝑖 |)

(Sel1)
|Γ | ⊢ ctag.𝑋𝑖 <: 𝜏 |𝑁𝑖 |

(2.4.6)
|Γ | ⊢ ctag.𝑋𝑖 <: |𝑁𝑖 |

(Typ)
|Γ | ⊢ (𝑋𝑖 = ctag.𝑋𝑖) <: (𝑋𝑖 : ⊥ .. |𝑁𝑖 |)

(Trans, 2.4.5)
|Γ | ⊢ ⟦𝐶⟧ctag.𝑋

<: (𝑋𝑖 : ⊥ .. |𝑁𝑖 |)
(Sub, Var)

|Γ | ⊢ this :! (𝑋𝐶𝑖 : ⊥ .. |𝑁𝑖 |)
(Sel1)

|Γ | ⊢ |𝑋𝐶 | <: |𝑁 |
(EE-Typs)

Γ′ ⊩|Γ |

(2.4.5, Typ)
|Γ | ⊢ ⟦𝐶⟧ctag.𝑋

<: ⟦𝐶⟧ |𝑋 |

(Sub)
|Γ | ⊢ this :(!) ⟦𝐶⟧ |𝑋 |

(EE-This)
Γ ⊢ |Γ |

Case Γ = Γ′, 𝑥 : 𝑇 where 𝑥 ≠ this

We have |Γ | = |Γ′ |, 𝑥 : |𝑇 |. By the IH, Γ′ ⊩|Γ′ | and EE-Var finishes the case.
■

Lemma 4.3.5: Appending on the right preserves environment entailment

If Γ ⊩Δ then Γ ⊩Δ, Δ′.

Proof. By straightforward induction on the derivation of Γ ⊩Δ. ■

Lemma 4.3.6: Truncating on the left preserves environment entailment

If Γ ⊩Δ and Γ = Γ1, Γ2, then Γ1 ⊩Δ.

Proof. By induction on the derivation of Γ ⊩Δ we find that Γ1 ⊩Δ1 where Δ1 is either Δ or a
prefix of Δ and Lemma 4.3.5 finishes the case. ■

Theorem 4.3.7: Translation preserves substitution

|𝜎𝑆 | = |𝜎 | |𝑆 |
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Proof. By structural induction on 𝑆 .

Case 𝑆 = 𝑋

If 𝑋 ∉ dom(𝜎) this is trivial, otherwise 𝜎 = [... , 𝑇 /𝑋, ...] and |𝜎 | = [... , |𝑇 |/|𝑋 |, ...] for some
𝑇 . Hence, |𝜎𝑋 | = |𝑇 | = |𝜎 | |𝑇 |.

Case 𝑆 = 𝐶 [𝑇 ]

By definition,
|𝜎𝐶 [𝑇 ] | = |𝐶 [𝜎𝑇 ] | = ct.𝐶 ∧

⋀︂
𝑋 = |𝜎𝑇 |

|𝜎 | |𝐶 [𝑇 ] | = ct.𝐶 ∧
⋀︂
𝑋 = |𝜎 | |𝑇 |

By the IH, |𝜎𝑇 | = |𝜎 | |𝑇 | which lets us finish the case.
■

Lemma 4.3.8

Given Γ = (𝑋𝐶 <: 𝑁𝐶 , this : 𝐶 [𝑋𝐶 ]), class𝐶 [𝑋𝐵] ◁ 𝐵 [𝑈 ], tparams(𝐵) = 𝑋𝐵 <: 𝑁𝐵 and
Γ ⊩Δ, then

1. Δ ⊢ |𝑋𝐵 | =:= |𝑈 |
2. Δ ⊢ |𝑋𝐵 | <: |𝑁𝐵 |

Proof. We first prove part 1. then use that result to prove part 2.

By definition, ⟦𝐶⟧ = ... ∧ baseArgs(𝐶) and baseArgs(𝐶) =
(︂⋀︂

𝑋𝐵 = |𝑈 |
)︂
∧ .... Hence,

(Sub, EE-This)
Δ[this] ⊢ this :! ⟦𝐶⟧

(Sub, 2.4.5)
Δ[this] ⊢ this :! (𝑋𝐵 = |𝑈 |)

(Sel1, Sel2)
Δ ⊢ |𝑋𝐵 | =:= |𝑈 |

Let Γ1 = 𝑋𝐶 <: 𝑁𝐶 . By inversion, ⊢ 𝐶 ok implies Γ1 ⊢ 𝐵 [𝑈 ] wf which implies Γ1 ⊢ 𝑈 <: 𝜎𝑁𝐵

where 𝜎 = [𝑈 /𝑋𝐵]. Hence,

(Weaken)
Γ ⊢ 𝑈 <: 𝜎𝑁𝐵

(4.3.11)
Δ ⊢ |𝑈 | <: |𝜎𝑁𝐵 |

(4.3.7)
Δ ⊢ |𝜎 | |𝑋𝐵 | <: |𝜎 | |𝑁𝐵 | Δ ⊢ |𝑋𝐵 | =:= |𝑈 |

(Trans, 2.4.6)
Δ ⊢ |𝑋𝐵 | <: |𝑁𝐵 |

■
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Theorem 4.3.9: Well-formedness preservation

If Γ ⊩Δ and Γ ⊢ 𝑆 wf then Δ ⊢ |𝑆 | wf.

Proof. By induction on the derivation of Γ ⊢ 𝑆 wf.

Case Γ ⊢ Object wf (WF-Object)

|Object| = ct.Object is well-formed since ct ∈ dom(Δ) by EE-Empty and Lemma 4.3.6.

Case
𝑋 ∈ dom(Γ)

(WF-Var)
Γ ⊢ 𝑋 wf

By Lemma 4.3.6 and inversion of EE-Typs we must have Δ ⊢ |𝑋 | <: |𝑁 | for some 𝑁 which
implies Δ|𝑋 | wf since DOT subtyping is only defined on well-formed types.

Case
class𝐶 [𝑋𝐶 <: 𝑁 ] ◁ 𝑃 ... 𝜎 = [𝑇 /𝑋𝐶 ] Γ ⊢ 𝑇 wf Γ ⊢ 𝑇 <: 𝜎𝑁

(WF-Class)
Γ ⊢ 𝐶 [𝑇 ] wf

By definition, |𝐶 [𝑇 ] | = ct.𝐶 ∧ {_ ⇒ 𝑋𝐶 = |𝑇 |}. By the IH, Δ ⊢ |𝑇 | wf and Δ ⊢ ct.𝐶 wf since
ct ∈ dom(Δ).

■

Lemma 4.3.10

Given tparams(𝐶) = 𝑋 <: 𝑁 , Γ ⊢ 𝐶 [𝑇 ] wf and Γ ⊩Δ, then Δ ⊢ |𝐶 [𝑇 ] | <: {_ ⇒ |𝜎 |⟦𝐶⟧}
where 𝜎 = [𝑇 /𝑋 ].

Proof. We have |𝐶 [𝑇 ] | = ct.𝐶 ∧ {_ ⇒ 𝑋 = |𝑇 |}.

(4.3.6,EE-Empty)
Δ[ct] ⊢ ct :! ⟦𝐶𝑇⟧

(Sub, 2.4.5)
Δ[ct] ⊢ ct :! (𝐶 = {this ⇒ ⟦𝐶⟧, 𝑋 : ⊥ .. |𝑁 |})

(Sel1)
Δ ⊢ ct.𝐶 <: {this ⇒ ⟦𝐶⟧, 𝑋 : ⊥ .. |𝑁 |}

(Trans, BindX, 2.4.5)
Δ ⊢ ct.𝐶 <: {this ⇒ ⟦𝐶⟧}

Hence, by transitivity, width and depth subtyping we only need to show that

Δ ⊢ {this ⇒ ⟦𝐶⟧} ∧ {_ ⇒ 𝑋 = |𝑇 |} <: {_ ⇒ |𝜎 |⟦𝐶⟧}

As in the example given in subsection 4.3.1, this requires using And-Bind, but in And-Bind

the bound variable of the recursive types involved must all be equal. This is doable since we’re
working up to α-renaming, but we need to be careful: this might be bound in Δ and free in |𝑇 |,
therefore we cannot rename _ to this. Instead, we rename this to a fresh variable 𝑧:

{this ⇒ ⟦𝐶⟧} = {𝑧 ⇒ [𝑧/this]⟦𝐶⟧}
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By inversion of ⊢ 𝐶 ok via GT-Class, only 𝑋 may be free in the types appearing in 𝐶𝑇 (𝐶),
therefore this is equivalent to

{𝑧 ⇒ 𝜏⟦𝐶⟧} where 𝜏 = [𝑧.𝑋/|𝑋 |]

Furthermore, we note that |𝜎 |⟦𝐶⟧ = [|𝑇 |/|𝑋 |]⟦𝐶⟧ = [|𝑇 |/𝑧.𝑋 ] (𝜏⟦𝐶⟧).

Let Δ1 = Δ, 𝑧 : 𝜏⟦𝐶⟧ ∧
⋀︂
𝑋 = |𝑇 |. Then

(Sub, Var)
Δ1 ⊢ 𝑧 :! (𝑋 = |𝑇 |)

(Sel1, Sel2)
Δ1 ⊢ 𝑧.𝑋 =:= |𝑇 |

(2.4.6)
Δ1 ⊢ 𝜏⟦𝐶⟧ <: [|𝑇 |/𝑧.𝑋 ] (𝜏⟦𝐶⟧)

(BindX, And11)
Δ ⊢ {𝑧 ⇒ 𝜏⟦𝐶⟧, 𝑋 = |𝑇 |} <: {_ ⇒ |𝜎 |⟦𝐶⟧}

(And-Bind)
Δ ⊢ {𝑧 ⇒ 𝜏⟦𝐶⟧} ∧ {_ ⇒ 𝑋 = |𝑇 |} <: {_ ⇒ |𝜎 |⟦𝐶⟧}

■

Theorem 4.3.11: Subtyping preservation

If Γ ⊩Δ, Γ ⊢ 𝑆 wf and Γ ⊢ 𝑆 <: 𝑇 then Δ ⊢ |𝑆 | <: |𝑇 |.

Proof. By Theorem 4.3.9, Δ ⊢ |𝑆 | wf. By Lemma 4.2.4, Γ ⊢ 𝑇 wf so by Theorem 4.3.9 again
Δ ⊢ |𝑇 | wf. We proceed by induction on the derivation of Γ ⊢ 𝑆 <: 𝑇 .

Case
Γ(𝑍 ) = 𝑄

(GS-Var)
Γ ⊢ 𝑍 <: 𝑄

We must have Γ = Γ1, 𝑋 <: 𝑁, Γ2 where 𝑍 = 𝑋𝑖 , 𝑄 = 𝑁𝑖 . Then by Lemma 4.3.6, Γ1, 𝑋 <: 𝑁 ⊢ Δ
and EE-Typs finishes the case.

Case Γ ⊢ 𝑆 <: 𝑆 (GS-Refl)

By Theorem 4.3.9, Δ ⊢ |𝑆 | wf and Refl finishes the case.

Case
class𝐶 [𝑋𝐶 <: 𝑁 ] (...) ◁ 𝐵 [𝑈 ] ... 𝜎 = [𝑇 /𝑋𝐶 ]

(GS-Class)
Γ ⊢ 𝐶 [𝑇 ] <: 𝐵 [𝜎𝑈 ]

By definition, |𝐵 [𝜎𝑈 ] | = ct.𝐵 ∧ {_ ⇒ 𝑋𝐵 = |𝜎𝑈 |} so by And2 we only need to show that
|𝐶 [𝑇 ] | is a subtype of each operand of the intersection:

Δ[ct] ⊢ ct :! ⟦𝐶𝑇⟧
(Sel1, Sub, 2.4.5)

Δ ⊢ ct.𝐶 <: ct.𝐵
(And11)

Δ ⊢ |𝐶 [𝑇 ] | <: ct.𝐵
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(BindX, 2.4.5)
Δ ⊢ {_ ⇒ |𝜎 |⟦𝐶⟧} <: {_ ⇒ 𝑋𝐵 = |𝜎 | |𝑈 |}

(4.3.7)
Δ ⊢ {_ ⇒ |𝜎 |⟦𝐶⟧} <: {_ ⇒ 𝑋𝐵 = |𝜎𝑈 |}

(Trans, 4.3.10)
Δ ⊢ |𝐶 [𝑇 ] | <: {_ ⇒ 𝑋𝐵 = |𝜎𝑈 |}

Case
Γ ⊢ 𝑆 <: 𝑈 Γ ⊢ 𝑈 <: 𝑇

(GS-Trans)
Γ ⊢ 𝑆 <: 𝑇

(IH)
Δ ⊢ |𝑆 | <: |𝑈 |

(4.2.4)
Γ ⊢ 𝑈 wf

(IH)
Δ ⊢ |𝑈 | <: |𝑇 |

(Trans)
Δ ⊢ |𝑆 | <: |𝑇 |

■

Lemma 4.3.12: Class translation preserves value parameters

If Γ ⊩Δ, Γ ⊢ 𝑁 wf and vparams(𝑁 ) = 𝑓 : 𝑈 , then Δ ⊢ |𝑁 | <: (𝑓 () : |𝑈 |)

Proof. By inversion of vparams(𝑁 ). Case G-Object is trivial.

Case
class𝐶 [𝑋 <: 𝑁 ] (𝑓 : 𝑈 ′) ... 𝜎 = [𝑇 /𝑋 ]

(G-Class)
vparams(𝐶 [𝑇 ]) ≔ 𝑓 : 𝜎𝑈 ′

For all 𝑖 in bounds:

⟦𝐶⟧ = ... ∧ ⟦𝑓𝑖 : 𝑈𝑖⟧ ∧ ...
(Bind1, 2.4.5)

Δ ⊢ |𝜎 |⟦𝐶⟧ <: |𝜎 |⟦𝑓𝑖 : 𝑈𝑖⟧
(4.3.7)

Δ ⊢ |𝜎 |⟦𝐶⟧ <: (𝑓𝑖 () : |𝜎𝑈𝑖 |)
(Trans, Bind1, 4.3.10)

Δ ⊢ |𝐶 [𝑇 ] | <: (𝑓𝑖 () : |𝜎𝑈𝑖 |)
■

Lemma 4.3.13: Class translation preserves methods

If Γ ⊩Δ, Γ ⊢ 𝑁 wf and mtype(𝑚, 𝑁 ) = [𝑌 <: 𝑃] → (𝑦 : 𝑈 ) → 𝑈0, then Δ ⊢ |𝑁 | <:
(𝑚(mtag : |𝑌 <: 𝑃 |, 𝑦 : |𝑈 |) : |𝑈0 |).

Proof. By induction on the derivation of mtypeΓ (𝑚, 𝑁 ).
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Case

class𝐶 [𝑋 <: 𝑁 ] ... {𝑀} 𝜎 = [𝑆/𝑋 ]
(def𝑚[𝑌 <: 𝑃 ′] (𝑥 : 𝑈 ′) : 𝑈 ′

0 = ...) ∈ 𝑀 (GM-Class)
mtype(𝑚, 𝐶 [𝑇 ]) ≔ [𝑌 <: 𝜎𝑃 ′] → (𝑥 : 𝜎𝑈 ′) → 𝜎𝑈

′
0)

This case mirrors case G-Class of Lemma 4.3.12.

⟦𝐶⟧ = ... ∧ ⟦𝑚⟧𝐶 ∧ ...
(Bind1, 2.4.5)

Δ ⊢ |𝜎 |⟦𝐶⟧ <: |𝜎 |⟦𝑚⟧𝐶
(4.3.7)

Δ ⊢ |𝜎 |⟦𝐶⟧ <: (𝑚(mtag : |𝑌 <: 𝜎𝑃 ′ |, 𝑦 : |𝜎𝑈 |) : |𝜎𝑈0 |)
(Trans, Bind1, 4.3.10)

Δ ⊢ |𝐶 [𝑇 ] | <: (𝑚(mtag : |𝑌 <: 𝜎𝑃 ′ |, 𝑦 : |𝜎𝑈 |) : |𝜎𝑈0 |)

Case

class𝐶 [𝑋 <: 𝑁 ] (...) ◁ 𝑃 {𝑀} 𝜎 = [𝑇 /𝑋 ]
(def𝑚 ...) ∉ 𝑀

(GM-Super)
mtype(𝑚, 𝐶 [𝑇 ]) ≔ mtype(𝑚, 𝜎𝑃)

(GS-Class)
Γ ⊢ 𝐶 [𝑇 ] <: 𝜎𝑃

(4.3.11)
Δ ⊢ |𝐶 [𝑇 ] | <: |𝜎𝑃 |

(4.2.4)
Γ ⊢ 𝜎𝑃 wf

(IH)
Δ ⊢ |𝜎𝑃 | <: (𝑚(mtag : |𝑌 <: 𝑃 |, 𝑦 : |𝑈 |) : |𝑈0 |)

(Trans)
Δ ⊢ |𝐶 [𝑇 ] | <: (𝑚(mtag : |𝑌 <: 𝑃 |, 𝑦 : |𝑈 |) : |𝑈0 |)

■

Lemma 4.3.14: Method translation preserves overriding relationship

Given class𝐶 [𝑋𝐶 <: 𝑁𝐶 ] ◁ 𝐵 [𝑈 ]{𝑀}, Γ = 𝑋𝐶 <: 𝑁𝐶 , this : 𝐶 [𝑋𝐶 ] and Γ ⊩Δ, then
𝑚 ∈ mnames(𝐵) implies Δ ⊢ ⟦𝑚⟧𝐶 <: ⟦𝑚⟧𝐵 .

Proof. Let

tparams(𝐵) = 𝑋𝐵 <: 𝑁𝐵

mtype(𝑚, 𝐵 [𝑋𝐵]) = [𝑍 <: 𝑄] → (𝑦 : 𝑉 ) → 𝑉0

mtype(𝑚, 𝐶 [𝑋𝐶 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

then mtype(𝑚,𝐵 [𝑈 ]) = |𝑍 <: 𝜎𝑄] → (𝑦 : 𝜎𝑉 ) → 𝜎𝑉0 by observation. We proceed by inversion
on the derivation of mtype(𝑚, 𝐶 [𝑋𝐶 ]).

Case
(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑈 ) : 𝑈0 = 𝑒0) ∈ 𝑀

(GM-Class)
mtype(𝑚, 𝐶 [𝑋𝐶 ]) ≔ [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

Let Γ𝑚 = Γ, 𝑌 <: 𝑃 and Δ𝑚 = Δ, mtag : |𝑌 <: 𝑃 |, then Γ𝑚 ⊩Δ𝑚 by EE-Typs. By inversion,
⊢𝐶 ok implies Γ ⊢𝑚 ok implies overrideΓ (𝑚,𝐶 [𝑋𝐶 ],𝐵 [𝑈 ]) which implies that𝑌 = 𝜎𝑍 , 𝑃 = 𝜎𝑄 ,
𝑥 = 𝑦,𝑈 = 𝜎𝑉 and Γ𝑚 ⊢ 𝑈0 <: 𝜎𝑉0, hence

58



4.3 Translation

(4.3.8)
Δ𝑚 ⊢ |𝑋𝐵 | =:= 𝑈

(4.3.7, 2.4.6)
Δ𝑚 ⊢ |𝜎𝑄 | <: |𝑄 |

(Typ)
Δ𝑚 ⊢ (𝑌 : ⊥ .. |𝑄 |) <: (𝑌 : ⊥ .. |𝑃 |)

(BindX)
Δ ⊢ |𝑌 <: 𝑄 | <: |𝑌 <: 𝑃 |

Γ𝑚 ⊢ 𝑈0 <: 𝜎𝑉0
(4.3.11)

Δ𝑚 ⊢ |𝑈0 | <: |𝜎𝑉0 |
(4.3.7)

Δ𝑚 ⊢ |𝑈0 | <: |𝜎 | |𝑉0 |
(Trans, 2.4.6)

Δ𝑚 ⊢ |𝑈0 | <: |𝑉0 |
(Weaken)

Δ𝑚, 𝑦 : |𝑉 | ⊢ |𝑈0 | <: |𝑉0 |
(Fun’, Narrow)

Δ ⊢ ⟦𝑚⟧𝐶 <: ⟦𝑚⟧𝐵

Case
(def𝑚 ...) ∉ 𝑀

(GM-Super)
mtype(𝑚, 𝐶 [𝑇 ]) ≔ mtype(𝑚, 𝜎𝑃)

In this case, ⟦𝑚⟧𝐶 = |𝜎 |⟦𝑚⟧𝐵 by inspection so we only need to show that Δ ⊢ |𝜎 |⟦𝑚⟧𝐵 <:

⟦𝑚⟧𝐵 which follows by Theorem 4.3.7 and Lemma 4.3.8.
■

Lemma 4.3.15

Given class𝐶 [𝑋𝐶 <: 𝑁𝐶 ] (...) ◁ 𝐵 [𝑈 ], tparams(𝐵) = 𝑋𝐵 <: 𝑁𝐵 , Γ = 𝑋𝐶 <: 𝑁𝐶 , this :

𝐶 [𝑋𝐶 ] and Γ ⊩Δ, then Δ ⊢ ⟦𝐶⟧ |𝑋𝐶 |
<: ⟦𝐵⟧ |𝑋𝐵 | .

Proof. By definition, we want to show:

Δ ⊢ ⟦vparams(𝐶 [𝑋𝐶 ])⟧ ∧ ⟦mnames(𝐶)⟧𝐶 ∧ baseArgs(𝐶) ∧
⋀︂
𝑋𝐶 = |𝑋𝐶 | <:

⟦vparams(𝐵 [𝑋𝐵])⟧ ∧ ⟦mnames(𝐵)⟧𝐵 ∧ baseArgs(𝐵) ∧
⋀︂
𝑋𝐵 = |𝑋𝐵 |

After proving the following claims, we can finish the proof by width and depth subtyping.

Claim 1: Δ ⊢ ⟦vparams(𝐶 [𝑋𝐶 ])⟧ <: ⟦vparams(𝐵 [𝑋𝐵])⟧

Let 𝜎𝐵 = [𝑈 /𝑋𝐵] and note that Δ ⊢ |𝑋𝐵 | =:= |𝑈 | by Lemma 4.3.8. ⊢ 𝐶 ok implies
that vparams(𝐶 [𝑋𝐶 ]) = ((𝜎𝐵 vparams(𝐵 [𝑋𝐵])), ...) so by Theorem 4.3.7 and observa-
tion, ⟦vparams(𝐶 [𝑋𝐶 ])⟧ = |𝜎𝐵 |⟦vparams(𝐵 [𝑋𝐵])⟧ ∧ 𝑇 for some 𝑇 . Finally, we find Δ ⊢
|𝜎𝐵 |⟦vparams(𝐵 [𝑋𝐵])⟧ ∧𝑇 <: ⟦vparams(𝐵 [𝑋𝐵])⟧ by width subtyping and Lemma 2.4.6.

Claim 2: Δ ⊢ ⟦mnames(𝐶)⟧𝐶 <: ⟦mnames(𝐵)⟧𝐵

By definition, mnames(𝐶) = (mnames(𝐵), ...) so ⟦mnames(𝐶)⟧𝐶 = ⟦mnames(𝐵)⟧𝐶 ∧ 𝑇
for some 𝑇 and we only need to prove that Δ ⊢ ⟦𝑚⟧𝐶 <: ⟦𝑚⟧𝐵 for all 𝑚 ∈ mnames(𝐵).
Lemma 4.3.14 finishes the claim.

Claim 3: Δ ⊢ baseArgs(𝐶) <: baseArgs(𝐵)

By definition, baseArgs(𝐶) = ... ∧ baseArgs(𝐵), so this follows by width subtyping.
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Claim 4: Δ ⊢ baseArgs(𝐶) <: 𝑋𝐵 = |𝑋𝐵 |

We have baseArgs(𝐶) =
(︂⋀︂

𝑋𝐵 = |𝑈 |
)︂
∧ .... Hence,

(Sub)
Δ ⊢ this :! 𝑋𝐵 = |𝑈 |

(Sel1, Sel2)
Δ ⊢ |𝑈 | =:= |𝑋𝐵 |

(2.4.5, Typ)
Δ ⊢ baseArgs(𝐶) <: 𝑋𝐵 = |𝑋𝐵 |

■

Lemma 4.3.16

Given tparams(𝐶) = 𝑋𝐶 <: 𝑁𝐶 , then |∅| ⊢ {this ⇒ ⟦𝐶⟧ |𝑋𝐶 |
, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: ct.𝐶 .

Proof. Since ⊢ 𝐶𝑇 ok and𝐶 ∈ dom(𝐶𝑇 ), there exists a a sequence of classes 𝐷 such that 𝐷1 = 𝐶 ,
𝐷𝑛 = Object and class𝐷𝑖 [...] ◁ 𝐷𝑖+1 [...] for all 𝑖 . We prove by induction on the length 𝑛 (≥ 2)
of the sequence.

Case (𝑛 = 2) class𝐶 [𝑋𝐶 <: 𝑁𝐶 ] (...) ◁ Object ...

(Var)
|∅| ⊢ ct :! ⟦𝐶𝑇⟧

(2.4.5, Typ)
|∅| ⊢ ⟦𝐶𝑇⟧ <: (𝐶 : ({this ⇒ ⟦𝐶⟧}) .. ⊤)

(Sub)
|∅| ⊢ ct :! (𝐶 = {this ⇒ ⟦𝐶⟧, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |})

(Sel2)
|∅| ⊢ {this ⇒ ⟦𝐶⟧, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: ct.𝐶

(Trans, BindX)
|∅| ⊢ {this ⇒ ⟦𝐶⟧ |𝑋𝐶 |

, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: ct.𝐶

Case (𝑛 > 2) class𝐶 [𝑋𝐶 <: 𝑁𝐶 ] (...) ◁ 𝐵 [𝑈 ] ...

It is easy to see that |∅| ⊢ ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: ct.𝐶 so by transitivity and
And2 we only need to prove

|∅| ⊢ {this ⇒ ⟦𝐶⟧ |𝑋𝐶 |
, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: ct.𝐵

Let tparams(𝐵) = 𝑋𝐵 <: 𝑁𝐵 . By the IH, |∅| ⊢ {this ⇒ ⟦𝐵⟧ |𝑋𝐵 | , 𝑋𝐵 : ⊥ .. |𝑁𝐵 |} <: ct.𝐵, so

by transitivity we only need to prove |∅| ⊢ {this ⇒ ⟦𝐶⟧ |𝑋𝐶 |
, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: {this ⇒

⟦𝐵⟧ |𝑋𝐵 | , 𝑋𝐵 : ⊥ .. |𝑁𝐵 |}. Let Δ = |∅|, this : ⟦𝐶⟧ |𝑋𝐶 | ∧ 𝑋𝐶 : ⊥ .. |𝑁𝐶 |. Then,
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(EE-This)
|𝑋𝐶 <: 𝑁𝐶 , this : 𝐶 [𝑋𝐶 ] | ⊩Δ

(4.3.15)
Δ ⊢ ⟦𝐶⟧ |𝑋𝐶 |

<: ⟦𝐵⟧ |𝑋𝐵 |

(4.3.8)
Δ ⊢ |𝑈 | <: |𝑁𝐵 |

(Typ)
Δ ⊢ 𝑋𝐵 = |𝑈 | <: 𝑋𝐵 : ⊥ .. |𝑁𝐵 |

(2.4.5)
Δ ⊢ ⟦𝐶⟧ <: 𝑋𝐵 : ⊥ .. |𝑁𝐵 |

(2.4.5)
Δ ⊢ ⟦𝐶⟧ |𝑋𝐶 |

<: ⟦𝐵⟧ |𝑋𝐵 | ∧ 𝑋𝐵 : ⊥ .. |𝑁𝐵 |
(BindX, And11)

|∅| ⊢ {this ⇒ ⟦𝐶⟧ |𝑋𝐶 |
, 𝑋𝐶 : ⊥ .. |𝑁𝐶 |} <: {this ⇒ ⟦𝐵⟧ |𝑋𝐵 | , 𝑋𝐵 : ⊥ .. |𝑁𝐵 |}

■

Lemma 4.3.17: this translation is type-preserving

If Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ] and Γ ⊩Δ, then Δ ⊢ this : |𝐶 [𝑋 ] |.

Proof. By inversion of Γ ⊩Δ, we have Δ ⊢ this : ⟦𝐶⟧ |𝑋 | . Hence,

Δ ⊢ this : ⟦𝐶⟧ |𝑋 |

(4.3.11)
Δ ⊢ |𝑋 | <: |𝑁 |

(Typ)
Δ ⊢ (𝑋 = |𝑋 |) <: (𝑋 : ⊥ .. |𝑁 |)

(2.4.5)
Δ ⊢ ⟦𝐶⟧ |𝑋 |

<: ⟦𝐶⟧ |𝑋 | ∧
⋀︂
𝑋 : ⊥ .. |𝑁 |

(Sub)
Δ ⊢ this : ⟦𝐶⟧ |𝑋 | ∧

⋀︂
𝑋 : ⊥ .. |𝑁 |

(VarPack)
Δ ⊢ this : {this ⇒ ⟦𝐶⟧ |𝑋 |

, 𝑋 : ⊥ .. |𝑁 |}
(Sub, Weaken, 4.3.16)

Δ ⊢ this : |𝐶 [𝑋 ] |

■

Theorem 4.3.18: Typing translation is type-preserving

If Γ ⊩Δ and Γ ⊢ 𝑒 : 𝑇 , then Δ ⊢ |𝑒 |Γ : |𝑇 |.

Proof. By induction on the derivation of Γ ⊢ 𝑒 : 𝑇 .

Case
Γ(𝑥) = 𝑇

(GT-Var)
Γ ⊢ 𝑥 : 𝑇

We can distinguish two sub-cases:
• If 𝑥 = this, then by EE-This we must have 𝑇 = 𝑁 and Lemma 4.3.17 finishes the case.
• Otherwise, by EE-Var we must have Δ(𝑥) = |𝑇 | and Var finishes the case.
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Case
Γ ⊢ 𝑒0 : 𝑇0 vparams(boundΓ (𝑇0)) = 𝑓 : 𝑇

(GT-Getter)
Γ ⊢ 𝑒0.𝑓𝑖 : 𝑇𝑖

We have |𝑒0.𝑓𝑖 |Γ = |𝑒0 |Γ .𝑓𝑖 (). Let 𝑈 = boundΓ (𝑇0). Then,

(IH)
Δ ⊢ 𝑒0 : |𝑇0 |

(4.2.1)
Γ ⊢ 𝑇0 <: 𝑈

(4.3.11)
Δ ⊢ |𝑇0 | <: |𝑈 |

(4.3.12)
Δ ⊢ |𝑈 | <: (𝑓𝑖 () : |𝑇𝑖 |)

(Trans)
Δ ⊢ |𝑇0 | <: (𝑓𝑖 () : |𝑇𝑖 |)

(Sub)
Δ ⊢ 𝑒0 : (𝑓𝑖 () : 𝑇𝑖)

(TApp’)
Δ ⊢ 𝑒0.𝑓𝑖 () : 𝑇𝑖

Case

Γ ⊢ 𝑒0 : 𝑇0 mtype(𝑚, boundΓ (𝑇0)) = [𝑌 <: 𝑃] → (𝑦 : 𝑈 ) → 𝑈0

𝜎 = [𝑉 /𝑌 ] Γ ⊢ 𝑉 wf, 𝑉 <: 𝜎𝑃, 𝑒 : 𝑆, 𝑆 <: 𝜎𝑈
(GT-Invk)

Γ ⊢ 𝑒0.𝑚[𝑉 ] (𝑒) : 𝜎𝑈0

We have |𝑒0.𝑚[𝑉 ] (𝑒) |Γ = let 𝑥mtag = {_ ⇒ 𝑌 = |𝑉 |} in |𝑒0 |Γ .𝑚(𝑥mtag, |𝑒 |Γ). By Lemma 4.3.13
and following a similar reasoning than in the previous case we find

Δ ⊢ |𝑒0 |Γ : (𝑚(mtag : |𝑌 <: 𝑃 |, 𝑦 : |𝑈 |) : |𝑈0 |)

Let 𝜏 = [𝑥mtag.𝑌/|𝑌 |] and Δ𝑚 = Δ, 𝑥mtag : {_ ⇒ 𝑌 = |𝑉 |}. Note that |𝜎 | = [|𝑉 |/𝑥mtag.𝑌 ]𝜏
and that we can always weaken Δ to Δ𝑚 . Then,

(4.3.11)
Δ𝑚 ⊢ |𝑉 | <: |𝜎𝑃 |

(4.3.7)
Δ𝑚 ⊢ |𝑉 | <: |𝜎 | |𝑃 |

(2.4.6)
Δ𝑚 ⊢ |𝑉 | <: 𝜏 |𝑃 |

(Sub, Typ)
Δ𝑚 ⊢ 𝑥mtag : (𝑌 : ⊥ .. 𝜏 |𝑃 |)

(VarPack)
Δ𝑚 ⊢ 𝑥mtag : {mtag ⇒ 𝑌 : ⊥ .. |𝑃 |}

(TAppVar)
Δ𝑚 ⊢ |𝑒0 |Γ .𝑚(𝑥mtag) : 𝜏 ((𝑦 : |𝑈 |) ⇒ |𝑈0 |)

(Sub, 2.4.6)
Δ𝑚 ⊢ |𝑒0 |Γ .𝑚(𝑥mtag) : |𝜎 | ( (𝑦 : |𝑈 |) ⇒ |𝑈0 |)

(4.3.7)
Δ𝑚 ⊢ |𝑒0 |Γ .𝑚(𝑥mtag) : ((𝑦 : |𝜎𝑈 |) ⇒ |𝜎𝑈0 |)

(Sub, IH)
Δ𝑚 ⊢ |𝑒 |Γ : |𝜎𝑈 |

(TApp’)
Δ𝑚 ⊢ |𝑒0 |Γ .𝑚(𝑥mtag, |𝑒 |Γ) : |𝜎𝑈0 |
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Case
Γ ⊢ 𝐶 [𝑇 ] wf vparams(𝐶 [𝑇 ]) = 𝑓 : 𝑈 Γ ⊢ 𝑒 : 𝑆, 𝑆 <: 𝑈

(GT-New)
Γ ⊢ new𝐶 [𝑇 ] (𝑒) : 𝐶 [𝑇 ]

If 𝐶 = Object then this follows directly by TNew, Sub and Top. Otherwise, we have
|new𝐶 [𝑇 ] (𝑒) |Γ = (let 𝑥ctag = {_ ⇒ 𝑋 = |𝑇 |} in ct. new𝐶 (𝑥ctag, |𝑒 |Γ)). Let tparams(𝐶) =

𝑋 <: ... and vparams(𝐶 [𝑋 ]) = 𝑓 : 𝑈 ′. Then we must have 𝑈 = 𝜎𝑈
′ where 𝜎 = [𝑇 /𝑋 ]. It is

easy to see that

Δ ⊢ ct : (new𝐶 (ctag : |𝑋 <: 𝑁 |, 𝑓param : 𝜏 |𝑈 ′ |) : 𝜏 |𝐶 [𝑋 ] |) where 𝜏 = [ctag.𝑋/|𝑋 |]

and the rest of the case proceeds much like the previous case with Δ𝑚 = Δ, 𝑥ctag : {_ ⇒
𝑋 = |𝑇 |}.

■

Theorem 4.3.19: Class entailment implies parent entailment

Given class𝐶 [𝑋𝐶 <: 𝑁𝐶 ] (...) ◁ 𝐵 [𝑈 ], tparams(𝐵) = 𝑋𝐵 <: 𝑁𝐵 , Γ𝐶 = 𝑋𝐶 <: 𝑁𝐶 , this :
𝐶 [𝑋𝐶 ] and Γ𝐵 = 𝑋𝐵 <: 𝑁𝐵, this : 𝐵 [𝑋𝐵], then Γ𝐶 ⊩Δ implies Γ𝐵 ⊩Δ.

Proof. By inversion of Γ𝐶 ⊩Δ via EE-This we have Δ[this] ⊢ this :(!) ⟦𝐶⟧ |𝑋 | .

(4.3.8)
Δ ⊢ |𝑋𝐵 | <: |𝑁𝐵 |

(EE-Typs)
𝑋𝐵 <: 𝑁𝐵 ⊩Δ

Δ ⊢ this :(!) ⟦𝐶⟧ |𝑋𝐶 |
(4.3.15)

Δ ⊢ ⟦𝐶⟧ |𝑋𝐶 |
<: ⟦𝐵⟧ |𝑋𝐵 |

(Sub)
Δ ⊢ this :(!) ⟦𝐵⟧ |𝑋𝐵 |

(EE-This)
Γ𝐵 ⊩Δ

■

Lemma 4.3.20: Method translation is well-typed

Given tparams(𝐶) = 𝑋 <: 𝑁 , Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ], Γ ⊩Δ, mtype(𝑚, 𝐶 [𝑋 ]) =

[𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0 and mbody(𝑚, 𝐶 [𝑋 ]) = 𝑒0, then Δ ⊢ ⦇𝑚 ⦈𝐶 : ⟦𝑚⟧𝐶 .

Proof. By induction on the derivations of mtype(𝑚, 𝐶 [𝑋 ]) and mbody(𝑚, 𝐶 [𝑋 ]).

Case

class𝐶 [𝑋 <: 𝑁 ] ... {𝑀}
(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇 ) : 𝑇0 = 𝑒0) ∈ 𝑀 (GM-Class)

mtype(𝑚, 𝐶 [𝑋 ]) ≔ [𝑌 <: 𝑃] → (𝑥 : 𝑇 ) → 𝑇0)
mbody(𝑚, 𝐶 [𝑋 ]) ≔ 𝜎𝑒0

Let Γ𝑚 = Γ, 𝑌 <: 𝑃, 𝑥 : 𝑇 and Δ𝑚 = Δ, mtag : |𝑌 <: 𝑃 |, 𝑥 : |𝑇 |, then Γ𝑚 ⊩Δ𝑚 by EE-Typs. By
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inversion, ⊢ 𝐶 ok implies Γ ⊢𝑚 ok implies Γ𝑚 ⊢ 𝑒0 : 𝐸0, 𝐸0 <: 𝑈0 and

(4.3.18)
Δ𝑚 ⊢ |𝑒0 |Γ𝑚 : |𝐸0 |

(4.3.11)
Δ𝑚 ⊢ |𝐸0 | <: |𝑈0 |

(Sub)
Δ𝑚 ⊢ |𝑒0 |Γ𝑚 : |𝑈0 |

(DFun’)
Δ ⊢ ⦇𝑚 ⦈𝐶 : ⟦𝑚⟧𝐶

Case

class𝐶 [𝑋𝐶 <: 𝑁𝐶 ] (...) ◁ 𝐵 [𝑈 ] {𝑀}
(def𝑚 ...) ∉ 𝑀

(GM-Super)
mtype(𝑚, 𝐶 [𝑋𝐶 ]) ≔ mtype(𝑚, 𝑃)
mbody(𝑚, 𝐶 [𝑋𝐶 ]) ≔ mbody(𝑚, 𝑃)

Let tparams(𝐵) = [𝑋𝐵 <: 𝑁𝐵], Γ𝐵 = 𝑋𝐵 <: 𝑁𝐵,this : 𝐵 [𝑋𝐵] and𝜎 = [|𝑈 |/|𝑋𝐵 |]. By observation
and 4.3.7 we must have

⦇𝑚 ⦈𝐶 = |𝜎 |⦇𝑚 ⦈𝐵
⟦𝑚⟧𝐶 = |𝜎 |⟦𝑚⟧𝐵

Then,

(4.3.19)
Γ𝐵 ⊩Δ

(IH)
Δ ⊢ ⦇𝑚 ⦈𝐵 : ⟦𝑚⟧𝐵

(4.3.8)
Δ ⊢ |𝑋𝐵 | =:= |𝑈 |

(2.4.7)
Δ ⊢ |𝜎 |⦇𝑚 ⦈𝐵 : |𝜎 |⟦𝑚⟧𝐵

■

Lemma 4.3.21: Class translation is well-typed

Suppose tparams(𝐶) = 𝑋 <: 𝑁 and Γ = (𝑋 <: 𝑁, this : 𝐶 [𝑋 ]) and let |Γ | = Δ, this :

⟦𝐶⟧𝜏 |𝑋 | where 𝜏 = [ctag.𝑋/|𝑋 |]. Then, Δ ⊢ {this ⇒ ⦇𝐶 ⦈𝜏 |𝑋 |} : {this ⇒ ⟦𝐶⟧𝜏 |𝑋 |}.

Proof. By TNew, this is true if the following claims are all true.

Claim 1: |Γ | ⊢ ⦇ 𝑓 : 𝑈 ⦈ : ⟦𝑓 : 𝑈⟧ ∀(𝑓 : 𝑈 ) ∈ vparams(𝐶 [𝑋 ])

By Var, we have |Γ | ⊢ 𝑓param : 𝜏 |𝑈 |. By Lemma 2.4.6, |Γ | ⊢ 𝑓param : |𝑈 | and DFun finishes the
claim.

Claim 2: |Γ | ⊢ ⦇𝑚 ⦈𝐶 : ⟦𝑚⟧𝐶 ∀𝑚 ∈ mnames(𝐶)

By Theorem 4.3.4, Γ ⊩|Γ | and Lemma 4.3.20 finishes the claim.
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Claim 3: (𝑋𝑖 = ctag.𝑋𝑖) : (𝑋𝑖 = ctag.𝑋𝑖) ∀𝑋𝑖 ∈ 𝑋

By DTyp
■

Lemma 4.3.22: Class table translation is well-typed

∅ ⊢
DOT

{ct ⇒ ⦇𝐶𝑇 ⦈} : {ct ⇒ ⟦𝐶𝑇⟧}.

Proof. After proving the following claims for each class𝐶 [𝑋 <: 𝑁 ] (𝑓 : 𝑈 ) in𝐶𝑇 , we can finish
the proof by TNew.

Claim 1:
|∅| ⊢ (𝐶 = {this ⇒ ⟦𝐶⟧, 𝑋 : ⊥ .. |𝑁 |}) :

(𝐶 = {this ⇒ ⟦𝐶⟧, 𝑋 : ⊥ .. |𝑁 |})

By DTyp.

Claim 2:
|∅| ⊢ (new𝐶 (ctag, 𝑓param) = {this ⇒ ⦇𝐶 [𝑋 ] ⦈}) :

(new𝐶 (ctag : {this ⇒ 𝑋 : ⊥ .. |𝑁 |}, 𝑓param : 𝜏 |𝑈 |) : 𝜏 |𝐶 [𝑋 ] |)
where 𝜏 = [ctag.𝑋/|𝑋 |].

Let Δ = |∅|, ctag : {this ⇒ 𝑋 : ⊥ .. |𝑁 |}, 𝑓param : 𝜏 |𝑈 |. Then,

(4.3.21)
Δ ⊢ {this ⇒ ⦇𝐶 ⦈𝜏 |𝑋 |} :

{this ⇒ ⟦𝐶⟧𝜏 |𝑋 |}

(Sel1, Var)
|𝑋 <: 𝑁, this : 𝐶 [𝑋 ] | ⊢ ctag.𝑋 <: |𝑁 |

(Typ)
|𝑋 <: 𝑁, this : 𝐶 [𝑋 ] | ⊢ (𝑋 = 𝜏 |𝑋 |) <: (𝑋 : ⊥ .. |𝑁 |)

(BindX)
Δ ⊢ {this ⇒ ⟦𝐶⟧𝜏 |𝑋 |} <: {this ⇒ ⟦𝐶⟧, 𝑋 : ⊥ .. |𝑁 |}

(Trans)
Δ ⊢ {this ⇒ ⟦𝐶⟧𝜏 |𝑋 |} <: ct.𝐶

(And2, Bind1)
Δ ⊢ {this ⇒ ⟦𝐶⟧𝜏 |𝑋 |} <: 𝜏 |𝐶 [𝑋 ] |

(Sub)
Δ ⊢ {this ⇒ ⦇𝐶 ⦈𝜏 |𝑋 |} : 𝜏 |𝐶 [𝑋 ] |

And DFun’ finishes the case.
■

Theorem 4.3.23: Program translation is type-preserving

If ∅ ⊢
FGJ
𝑇 wf and ∅ ⊢

FGJ
𝑒 : 𝑇 then ∅ ⊢

DOT
let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |∅ : |𝑇 |.
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Proof.

(4.3.22)
∅ ⊢ {ct ⇒ ⦇𝐶𝑇 ⦈} : {ct ⇒ ⟦𝐶𝑇⟧}

∅ ⊢ 𝑒 : 𝑇
(4.3.18)

ct : ⟦𝐶𝑇⟧ ⊢ |𝑒 |∅ : |𝑇 |
(EnvPackTp)

ct : {ct ⇒ ⟦𝐶𝑇⟧} ⊢ |𝑒 |∅ : |𝑇 |
(Let)

∅ ⊢ let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |∅ : |𝑇 |

■
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5 Pathless Scala

In this chapter, we present Pathless Scala (PS).1 PS extends cast-less FGJ with multiple inheritance
via traits and with intersection types in the style of DOT. As its name indicate, PS lacks path-
dependent types and can thus be seen as a stepping stone on the way to Dependent Scala in
Chapter 7. To develop a type-preserving translation scheme from PS to DOT we once again
need to extend DOT, this time with a new typing rule And-I’. In the process of proving the
extended DOT sound, we end up having to generalize the definition of type soundness used in
[Rompf and Amin 2016, Theorem 1] which did not imply the usual property of preservation.

5.1 Syntax
Figure 5.1: PS: Syntax

𝑥, 𝑦, 𝑧 Variable
𝐵, 𝐶, 𝐷, 𝐸 Class name
𝑓 , 𝑔 Class parameter
𝑚 Method name
𝑋𝐶 Class variable
𝑋𝑚 Method variable
𝑋, 𝑌, 𝑍 ⩴ 𝑋𝐶 | 𝑋𝑚 Type variable
𝑁, 𝑃, 𝑄 ⩴ 𝐶 [𝑇 ] Non-variable
𝑆, 𝑇 , 𝑈 , 𝑉 ⩴ Type
𝑋 | 𝑁 | 𝑆 &𝑇

Γ ⩴ Context
∅ | Γ, 𝑥 : 𝑇 | Γ, 𝑋 <: 𝑁

𝐿 ⩴ Class declaration
class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑇 ) ◁ 𝑃 (𝑓 ) , 𝑄 {𝑀}
trait𝐶 [𝑋𝐶 <: 𝑁 ] ◁𝑄 {𝐻 ; 𝑀}

𝐻 ⩴ Abstract method
def𝑚[𝑋𝑚 <: 𝑁 ] (𝑥 : 𝑇 ) : 𝑇0

𝑀 ⩴ Concrete method
𝐻 = 𝑒0

𝑒 ⩴ Expression
𝑥 variable
𝑒.𝑓 parameter access
𝑒0.𝑚[𝑇 ] (𝑒) method call
new𝐶 [𝑇 ] (𝑒) object

𝜎, 𝜏 ⩴ [𝑇 /𝑋 ] Type substitution

We call 𝑆 &𝑇 the intersection of 𝑆 and 𝑇 .
1Part of this chapter is revised and extended from [Martres 2021].
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A PS class is either a proper class (declared using the keyword “class ”) or a trait (declared using
the keyword “trait ”). Proper classes must extend exactly one other proper class as before,
but both proper classes and traits can extend zero, one or many traits. Traits cannot extend
proper classes syntactically but are semantically considered subtypes of Object.2 Compared to
proper classes, traits do not have constructor parameters3 and cannot be constructed using new,
but they can have methods declared without a body which we call abstract and which must
be implemented in sub-classes of the traits. For convenience, we define in Figure 5.2 lookup
functions returning the parents and the method declarations of either classes or traits as well as
functions used to determine whether a given class name𝐶 corresponds to a proper class or trait.

Figure 5.2: PS: Lookup functions (part 1)

Parent classes parents(𝑁 ) = 𝑃

parents(Object) ≔ ∅

class𝐶 ◁ 𝑃 (...) , 𝑄 {𝑀} 𝜎 = [𝑇 /𝑋 ]
parents(𝐶 [𝑇 ]) ≔ 𝜎𝑃, 𝜎𝑄

trait 𝐶 [𝑋 <: 𝑁 ] ◁ 𝑃 {𝐻 ; 𝑀} 𝜎 = [𝑇 /𝑋 ]
parents(𝐶 [𝑇 ]) ≔ Object, 𝜎𝑃

𝐶 is a proper class isProperClass(𝐶)

class𝐶 ...

isProperClass(𝐶)

Method declarations mdecls(𝑁 ) = 𝑀

mdecls(Object) ≔ ∅

class𝐶 ◁ 𝑃 (...) , 𝑄 {𝑀} 𝜎 = [𝑇 /𝑋 ]
mdecls(𝐶 [𝑇 ]) ≔ 𝜎𝑀

trait 𝐶 [𝑋 <: 𝑁 ] ◁ 𝑃 {𝐻 ; 𝑀} 𝜎 = [𝑇 /𝑋 ]
mdecls(𝐶 [𝑇 ]) ≔ 𝜎𝐻, 𝜎𝑀

𝐶 is a trait isTrait(𝐶)

trait𝐶 ...

isTrait(𝐶)

5.2 Subtyping and well-formedness
The subtyping rules for intersections in Figure 5.3 mirror the DOT rules And11, And12 and
And2 such that the subtyping relationship defined by these rules induces a partial order in
which 𝑇1 &𝑇2 is the greatest lower bound of 𝑇1 and 𝑇2. The introduction of intersection types
means that syntactically distinct types can now be mutual subtypes like 𝑇 and 𝑇 & 𝑇 . This
motivates an additional rule PS-Inv which lets us relate 𝐶 [𝑇 ] with 𝐶 [𝑇 &𝑇 ].

Without surprise, WFP-And (in Figure 5.4) considers an intersection type to be well-formed if
both of its operands are well-formed.

2This is a restriction from real Scala where a trait may explicitly extend a class.
3Scala used to have the same restriction until Scala 3: [Odersky et al. 2022].
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Figure 5.3: PS: Subtyping

Γ ⊢ 𝑆 <: 𝑇
GS-Refl and GS-Trans are carried over from Figure 4.2.

𝑃 ∈ parents(𝐶 [𝑇 ])

Γ ⊢ 𝐶 [𝑇 ] <: [𝑇 /𝑋 ]𝑃
(PS-Class)

Γ ⊢ 𝑆 <: 𝑇, 𝑇 <: 𝑆

Γ ⊢ 𝐶 [𝑆] <: 𝐶 [𝑇 ]
(PS-Inv)

Γ ⊢ 𝑆1 <: 𝑇
Γ ⊢ 𝑆1 & 𝑆2 <: 𝑇

(PS-And11)

Γ ⊢ 𝑆2 <: 𝑇
Γ ⊢ 𝑆1 & 𝑆2 <: 𝑇

(PS-And12)

Γ ⊢ 𝑆 <: 𝑇1, 𝑆 <: 𝑇2

Γ ⊢ 𝑆 <: 𝑇1 &𝑇2
(PS-And2)

Figure 5.4: PS: Well-formedness

Well-formed type Γ ⊢ 𝑇 wf
We extend Figure 4.3 with:

Γ ⊢ 𝑇1, 𝑇2 wf

Γ ⊢ 𝑇1 &𝑇2 wf
(WFP-And)

5.3 Typing
5.3.1 Expression typing
The expression typing rules from FGJ (Figure 4.6) can be carried over as-is, only the helper
functions need to be generalized (in Figure 5.5) to handle intersection types.

Generalizing bound

boundΓ (𝑇 ) is still defined to return a non-variable upper-bound of𝑇 , but now this upper-bound
is allowed to be an intersection of applied class types. This requires generalizing both vparams
and mtype.

Generalizing vparams

G-Object and G-Class can be carried over without changes.
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Figure 5.5: PS: Lookup functions (part 2)

The definitions from Figure 4.5 are carried over.

Non-variable upper bound of type boundΓ (𝑇 ) ≔ &𝑁

boundΓ (𝑆 &𝑇 ) ≔ boundΓ (𝑆) & boundΓ (𝑇 ) (B-And)

Type parameters lookup tparams(𝐶) ≔ 𝑋 <: 𝑁

trait𝐶 [𝑋 <: 𝑁 ] ...
tparams(𝐶) ≔ 𝑋 <: 𝑁

Value parameters lookup vparams(𝑇 ) ≔ 𝑓 : 𝑇

isTrait(𝑁 )
vparams(𝑁 ) ≔ ∅

(PG-Trait)

vparams(𝑇2) ⊆ vparams(𝑇1)
vparams(𝑇1 &𝑇2) ≔ vparams(𝑇1)

(PG-AndL)

vparams(𝑇1) ⊆ vparams(𝑇2)
vparams(𝑇1 &𝑇2) ≔ vparams(𝑇2)

(PG-AndR)

Method type lookup mtype(𝑚, 𝑇 ) ≔ [𝑌 <: 𝑃] → (𝑥 : 𝑇 ) → 𝑇0

(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑈 ) : 𝑈0= 𝑒0
⁓⁓⁓

) ∈ mdecls(𝐶 [𝑇 ])

mtype(𝑚, 𝐶 [𝑇 ]) := [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

(PM-Impl)

parents(𝑁 ) = 𝑃 (def𝑚 ...) ∉ mdecls(𝑁 )
mtype(𝑚, 𝑁 ) ≔ mtype(𝑚, & 𝑃)

(PM-Super)

mtype(𝑚, 𝑇1) = [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉1

mtype(𝑚, 𝑇2) = [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉2

mtype(𝑚, 𝑇1 &𝑇2) ≔ [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉1 &𝑉2
(PM-AndLR)

mtype(𝑚, 𝑇1) defined
mtype(𝑚, 𝑇2) undefined

mtype(𝑚, 𝑇1 &𝑇2) ≔ mtype(𝑚, 𝑇1)
(PM-AndL)

mtype(𝑚, 𝑇1) undefined
mtype(𝑚, 𝑇2) defined

mtype(𝑚, 𝑇1 &𝑇2) ≔ mtype(𝑚, 𝑇2)
(PM-AndR)
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PG-Trait reflects the fact that traits cannot have value parameters.

PG-AndL and PG-AndR assume that in an intersection, the value parameters of one of the two
operands will be a subset of the value parameters of the other. This makes sense since traits
cannot have value parameters and PS does not allow inheriting from multiple unrelated classes.
While it is possible to construct an intersection type where the operands are unrelated classes,
no value of such a type exists, so leaving vparams undefined in that case is not an issue.

Generalizing mtype

Given x : L & R and the class table:

trait L { def foo(): A }

trait R { def foo(): B }

What is the type of x.foo()? In Java this would be an error, even though it is possible to
construct a class that override both of these methods via covariant overriding. The problem
is that there is no Java type representing the greatest lower bound of A and B, whereas as
we’ve seen above in Scala this is simply A & B. This motivates the definiton of PM-AndLR. It is
completed by PM-AndL and PM-AndR which handle the easy cases where the method is only
defined on one side of the intersection.

GM-Super is replaced by PM-Super which handles multiple parents, and GM-Class is replaced
by PM-Impl which handles both proper classes and traits.

5.3.2 Declaration typing

Abstract methods in proper classes

Methods in a proper class can either be declared in the class or inherited. The syntax of proper
classes forces declared methods to be concrete, but methods inherited from a trait may be
abstract. One might assume that a method is considered abstract in a class if there are only
abstract declarations of this method among its base types. However, both Java and Scala 3 allow
“re-abstracting” a method. For example in,

trait Base { def foo(): Object = ... }

trait Sub ◁ Base { def foo(): Object }

class A ◁ Object, Sub {}

class B ◁ Object, Base, Sub {}

A and B have the same linearization so we’d expect them to be equivalent, but in fact an inherited
method is considered abstract in a class if it is abstract among all the direct parents of this class,
so A is not well-formed since it only inherits an abstract foo from Sub.

To model this, we define the mutually recursive mnames𝑐𝑜𝑛 (𝑁 ) and mnames𝑎𝑏𝑠 (𝑁 ) in Figure 5.6
to be the sets of names of respectively concrete and abstract members of 𝑁 . PT-Class in
Figure 5.7 then takes care of checking that mnames𝑎𝑏𝑠 is empty for proper classes.
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Figure 5.6: PS: Lookup functions (part 3)

Concrete and abstract method names lookup mnames(𝐶) ≔ 𝑚

𝑃 = parents(𝑁 )
mdecls(𝑁 ) = def𝑚𝑎𝑏𝑠 ...; def𝑚𝑐𝑜𝑛 ... = ...

mnames𝑐𝑜𝑛 (𝑁 ) ≔ 𝑚𝑐𝑜𝑛 ∪ (mnames𝑐𝑜𝑛 (𝑃) ∖𝑚𝑎𝑏𝑠)
mnames𝑎𝑏𝑠 (𝑁 ) ≔ 𝑚𝑎𝑏𝑠 ∪ (mnames𝑎𝑏𝑠 (𝑃) ∖mnames𝑐𝑜𝑛 (𝑃))

Method names lookup mnames(𝐶) ≔ 𝑚

mnames(𝑁 ) ≔ mnames𝑎𝑏𝑠 (𝑁 ) ∪ mnames𝑐𝑜𝑛 (𝑁 )

Figure 5.7: PS: Typing rules

The expression typing rules from Figure 4.6 are carried over.

Method typing Γ ⊢𝑚 ok

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
mtype(𝑚, 𝐶 [𝑋 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

Γ, 𝑌 <: 𝑃 ⊢ 𝑈 , 𝑈0, 𝑃 wf
mbody(𝑚, 𝐶 [𝑋 ]) = 𝑒0 implies Γ, 𝑌 <: 𝑃, 𝑥 : 𝑈 ⊢ 𝑒0 : 𝐸0, 𝐸0 <: 𝑈0

𝑄 ∈ parents(𝐶 [𝑋 ]) implies overrideΓ (𝑚, 𝐶 [𝑋 ], 𝑄)
Γ ⊢𝑚 ok

(PT-Method)

Class typing ⊢ 𝐶 ok

class𝐶 [𝑋 <: 𝑁 ] (𝑔 : 𝑈 , 𝑓 : 𝑇 ) ◁ 𝑃 (𝑔), 𝑄 {def𝑚 ...}
L(𝐶 [𝑋 ]) defined isProperClass(𝑃) isTrait(𝑄)

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
Γ ⊢ 𝑁, 𝑈 , 𝑇 , 𝑃, 𝑄 wf Γ ⊢𝑚 ok vparams(𝑃) = 𝑔 : 𝑈

mnames𝑎𝑏𝑠 (𝐶) = ∅ 𝑚
′ ∈ mnames(𝐶) implies isValidΓ (𝑚′)

⊢ 𝐶 ok
(PT-Class)

trait𝐶 [𝑋 <: 𝑁 ] ◁𝑄 {def𝑚 ...}
L(𝐶 [𝑋 ]) defined isTrait(𝑄)

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
Γ ⊢ 𝑁, 𝑄 wf Γ ⊢𝑚 ok

𝑚
′ ∈ mnames(𝐶) implies isValidΓ (𝑚′)

⊢ 𝐶 ok
(PT-Trait)
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Linearization and method implementer

The base types of a class are determined by the reflexive transitive closure of the parents function.
With Scala traits, unlike Java interfaces, the order in which they are inherited matters. Since
the same trait may be indirectly inherited multiple times, Scala defines a canonical order of the
base types of a class called its linearization.

[Odersky and Zenger 2005] defines linearization for class names 𝐶 , but we find it more conve-
nient to generalize it to applied class types 𝑁 :

𝑁1, ... , 𝑁𝑛 = parents(𝑁 )
L(𝑁 ) ≔ 𝑁, L(𝑁𝑛) +⃗ ... +⃗ L(𝑁1)

Where +⃗ denotes concatenation with elements on the right replacing identical elements of
the left operand. It is illegal to inherit the same class twice if it is applied to different type
arguments4 and so we leave +⃗ undefined in that case:

∅ +⃗ 𝑁 ≔ 𝑁

𝑁0 ∈ 𝑁𝑟

(𝑁0, 𝑁𝑙 ) +⃗ 𝑁𝑟 ≔ 𝑁𝑙 +⃗ 𝑁𝑟

𝑁0 = 𝐶0 [...] 𝑁𝑟 = 𝐶𝑟 [...]
𝐶0 ∉ 𝐶𝑟

(𝑁0, 𝑁𝑙 ) +⃗ 𝑁𝑟 ≔ 𝑁0, (𝑁𝑙 +⃗ 𝑁𝑟 )

PT-Class and PT-Trait ensure that L is defined on all well-formed types.

We will use linearization to determine which base type of 𝑁 contains the implementation of𝑚
that will be called at runtime which we dub the implementer of𝑚 in 𝑁 written mimpl(𝑚, 𝑁 )
which we use to redefine mbody (contrast with Figure 4.5):

(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑈 ) : 𝑈0 = 𝑒0) ∈ mdecls(mimpl(𝑚, 𝑁 ))
mbody(𝑚, 𝑁 ) ≔ 𝑒0

(PMB-All)

We motivate the definition of mimpl with an example. Consider the following class table:

class One {}; class Two {}

trait Base { def foo(): Object }

trait Sub1 ◁ Base { def foo(): Object = new One }

trait Sub2 ◁ Base { def foo(): Object = new Two }

class A ◁ Object, Sub1, Sub2

4In real Scala this is in fact possible with variant type parameters. Even with invariant type parameters, we
could allow𝐶 [𝑇 ] as well as 𝐶 [𝑇 &𝑇 ] but this would require taking the environment as input in the definition of +⃗
to do subtyping checks. This would complicate our presentation for little benefits.
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The equivalent class table in Java (using interface instead of trait) would be illegal: both
Sub1 and Sub2 contain a concrete implementation of foo and neither trait overrides the other.
But this is legal Scala5 and (new A).foo() will evaluate to new Two() because Sub2 precedes
Sub1 in the linearization of A.

In general, concrete methods override abstract methods in both Java and Scala, but if we compare
a concrete method 𝑀 defined in 𝐶 with another concrete method 𝑀 ′ defined in 𝐷 then:

• In Java, 𝑀 overrides 𝑀 ′ if 𝐷 is a base type of 𝐶 .

• In Scala, 𝑀 overrides 𝑀 ′ in 𝑵 if 𝐶 precedes 𝐷 in L(𝑵 ). Since a type 𝑃 will always
appear before its parent in any linearization involving 𝑃 , this generalizes the Java rule.

Based on this specification, we can define mimpl as:

mimpl(𝑚, 𝑁 ) ≔ mimpl′(𝑚, L(𝑁 ))

mimpl′(𝑚, (𝑁, 𝑃)) :=
{︄
𝑁 if (def𝑚 ... = ...) ∈ mdecls(𝑚, 𝑁1)
mimpl′(𝑚, 𝑃) otherwise.

In the example above we have L(A) = A, Sub2, Sub1, Object and so we find mimpl(foo, A) =
Sub2 as expected.

Valid overrides

For a class 𝐶 to be well-typed, it is not enough for mimpl to be defined for all its members, we
must also check that the implementations chosen are valid overrides. As in FGJ, a valid override
must match the type of all the methods with the same name in its base types, meaning the type
and term parameters must be equal (up to 𝛼-renaming) and the result type is allowed to vary
covariantly. But on top of that, the override must not be accidental, a concept specific to Scala
illustrated in the following example.

This class table is not well-typed in Scala:

class One {}; class Two {}

trait Base { def foo(): Object }

trait Sub1 ◁ Base { def foo(): Object = ... }

trait Unrelated { def foo(): Object }

trait Sub2 ◁ Unrelated { def foo(): Object = ... }

class A ◁ Object, Sub1, Sub2

Although we have mimpl(foo, A) = Sub2 and overrideΓ (𝑚, Sub2, Sub1) defined, the compiler

5To be precise, foo in Sub2 needs to be declared with the override keyword for A to be well-typed, but we do
not model this in our calculus: when translating code from PS into real Scala, override should be added everywhere
it is legal to do so as determined by the Scala Language Specification [Odersky et al. 2021a, § 5.2.3].
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complains6:

method foo in trait Sub2 cannot override a concrete member without

a third member that's overridden by both (this rule is designed to

prevent “accidental overrides”)

In other words, when 𝑁 overrides a concrete member𝑚 defined in 𝑃 , we must ensure that 𝑁
and 𝑃 have a common base type which also declares𝑚 as specified by noAccidentalOverride in
Figure 5.8.

Figure 5.8: PS: Overriding

overrideΓ is carried over from Figure 4.4.

𝑚 is valid in Γ isValidΓ (𝑚)

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
𝑃 = mimpl(𝑚, 𝐶 [𝑋 ])
𝑄 ∈ L(𝐶 [𝑋 ]) implies:

• overrideΓ (𝑚, 𝑃, 𝑄)
• noAccidentalOverride(𝑚, 𝑃, 𝑄)

isValidΓ (𝑚)

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
mimpl(𝑚, 𝐶 [𝑋 ]) undefined
𝑄 ∈ L(𝐶 [𝑋 ]) implies:

• overrideΓ (𝑚, 𝐶 [𝑋 ], 𝑄)
isValidΓ (𝑚)

𝑚 in N does not accidentally override𝑚 in P isValidΓ (𝑚)

mimpl(𝑚, 𝑃) defined
𝑚 ∈mnames(𝑄) for some 𝑄 ∈L(𝑁 )∩L(𝑃)

noAccidentalOverride(𝑚, 𝑁, 𝑃)
mimpl(𝑚, 𝑄) undefined

noAccidentalOverride(𝑚, 𝑁, 𝑄)

5.4 Meta-theory
Lemmas 4.2.2 to 4.2.4 easily carry over to Pathless Scala. Lemma 4.2.1 also carries over with a
slightly different statement to account for the different result type of bound:

Lemma 5.4.1: Correctness of bound
If boundΓ (𝑆) = 𝑇 , then Γ ⊢ 𝑆 <: 𝑇 .

Proof. By induction on the derivation of boundΓ (𝑆). We only show the additional case compared
to Lemma 4.2.1.

6after adding override to the definition of foo in Sub2
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Case boundΓ (𝑆1 & 𝑆2) ≔ boundΓ (𝑆1) & boundΓ (𝑆2) (B-And)

We have boundΓ (𝑆1 & 𝑆2) = 𝑇1 &𝑇2. By the IH, Γ ⊢ 𝑆1 <: 𝑇1 and Γ ⊢ 𝑆2 <: 𝑇2. Lemma 2.4.5
finishes the case.

■

5.5 Translation
We extend the translation scheme from Section 4.3 to support intersection types, traits, and
multiple inheritance in Figure 5.9.

Type translation is easy: PS intersections map directly onto DOT intersections and the existing
rule for applied class type TR-Class does not need to be changed to handle traits. Expression
translation does not require any change to the existing rules from Figure 4.7.

Unlike with proper classes, we do not define a declaration translation ⦇𝐶 ⦈ for traits: this isn’t
necessary since traits do not have constructors and the translation already takes care of copying
over inherited method bodies. Instead, we manually define ⟦𝐶⟧ for traits which requires a
corresponding definition of ⟦𝑚⟧𝐶 .

To represent multiple inheritance, we generalize the class table translation to keep track of all
parents 𝐵 [...] of a class 𝐶 in its type tag via an intersection: ct.𝐶 = (

⋀︂
ct.𝐵 ∧ ...). We similarly

generalize baseArgs(𝑁 ) to handle multiple parents.

5.5.1 Required addition to DOT
Recall our example from subsection 5.3.1:

trait L { def foo(): A }

trait R { def foo(): B }

We defined mtype such that if Γ = 𝑥 : L & R, then Γ ⊢ 𝑥 .foo() : A & B. If typing preservation
holds, we should thus be able to derive |Γ | ⊢ 𝑥 .foo() : |A| ∧ |B|. Using the same approach as in
Lemma 4.3.13, we can see that,

|Γ | ⊢ |L| <: (foo() : |A|)
|Γ | ⊢ |R| <: (foo() : |B|)

Intuitively, we would then like to conclude that |Γ | ⊢ |L| ∧ |R| <: (foo() : |A| ∧ |B|) but DOT
lacks a subtyping rule that would let us distribute the intersection type inside the method type
and we have not been able to extend the existing DOT mechanization with such a rule. We
conjecture that DOT can be extended with such a rule since it is standard in type systems with
intersection types [Barendregt, Coppo, and Dezani-Ciancaglini 1983]. We will discuss missing
subtyping rules in DOT in more details in subsection 8.1.2.

Thankfully, all hope is not a lost: we can take inspiration from wfDOT and try to compensate
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Figure 5.9: Translating PS types, expressions and definitions to DOT

All definitions from Figure 4.7 are carried over.
Getter, method, class and environment translation from Figure 4.8 are carried over.

Type Translation |𝑇 | ≔ 𝑇
DOT

|𝑇1 &𝑇2 | ≔ |𝑇1 | ∧ |𝑇2 |

Trait Method Translation ⟦𝑚⟧𝐶 ≔ 𝑇

trait𝐶 [𝑋 <: 𝑁 ] ...
mtype(𝑚, 𝐶 [𝑋 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

⟦𝑚⟧𝐶 ≔ 𝑚(mtag : |𝑌 <: 𝑃 |, 𝑥 : |𝑈 |) : |𝑈0 |

Trait Translation ⟦𝐶⟧ ≔ 𝑇

trait𝐶 [𝑋 <: 𝑁 ] ...
⟦𝐶⟧ ≔ ⟦mnames(𝐶)⟧𝐶 ∧ baseArgs(𝐶)
⟦𝐶⟧𝑇 ≔ ⟦𝐶⟧ ∧ {_ ⇒ 𝑋 = 𝑇 }

Class Table Translation ⦇𝐶𝑇 ⦈ ≔ 𝑑
DOT

⦇∅ ⦈ ≔ (Object = ⊤)

𝐿𝐶 = class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑈 ) ◁ 𝐵 [...] , 𝐷 [...] 𝜏 = [ctag.𝑋𝐶/|𝑋𝐶 |]

⦇𝐿, 𝐿𝐶 ⦈ ≔ ⦇𝐿 ⦈, 𝐶 = ct.𝐵∧
⋀︂

ct.𝐷 ∧ {this ⇒ ⟦𝐶⟧, 𝑋𝐶 : ⊥ .. |𝑁 |},
new𝐶 (ctag : |𝑋𝐶 <: 𝑁 |, 𝑓param : 𝜏 |𝑈 |) : 𝜏 |𝐶 [𝑋𝐶 ] | = {this ⇒ ⦇𝐶 ⦈𝜏 |𝑋𝐶 |}

𝐿𝐶 = trait𝐶 [𝑋 <: 𝑁 ] ◁ 𝐵 [...]

⦇𝐿, 𝐿𝐶 ⦈ ≔ ⦇𝐿 ⦈, 𝐶 =
⋀︂

ct.𝐵 ∧ {this ⇒ ⟦𝐶⟧, 𝑋 : ⊥ .. |𝑁 |}

Arguments of Base Types baseArgs(𝐶) ≔ 𝑇
DOT

parents(𝑁 ) = 𝐵 [𝑆] tparams(𝐵) = 𝑋 <: ...

baseArgs(𝑁 ) ≔
⋀︂

𝑋 = |𝑆 |, baseArgs(𝐵 [𝑋 ])
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weak subtyping rules by stronger typing rules: it is easy to show that |Γ | ⊢ 𝑥 .foo() : |A| and
|Γ | ⊢ 𝑥 .foo() : |B|, so we should be able to deduce |Γ | ⊢ 𝑥 .foo() : |A| ∧ |B|.

Recall that wfDOT, unlike oopslaDOT, defines the following rule:

Γ ⊢ 𝑥 : 𝑇 Γ ⊢ 𝑥 : 𝑈

Γ ⊢ 𝑥 : 𝑇 ∧𝑈
(And-I )

This isn’t quite what we want: this rule only applies to variable 𝑥 so it won’t help us give a
more precise type to 𝑥 .foo(), but it’s a step in the right direction and it turns out to be relatively
easy to add to the mechanization.7 What we really need is8

Γ ⊢ 𝑡 : 𝑇 Γ ⊢ 𝑡 : 𝑈
Γ ⊢ 𝑡 : 𝑇 ∧𝑈

(And-I’)

Perhaps surprisingly, adding this rule to the existing mechanization is much more challenging.
To understand why, we must first briefly describe the operational semantics in [Rompf and
Amin 2016, Figure 2].

The syntax of the calculus is extended with concrete variables 𝑦 and stores 𝜌 = 𝑦 : 𝑑 mapping
concrete variables to declarations. The store typing relation 𝜌 Γ ⊢ 𝑡 : 𝑇 extends the regular
typing relation Γ ⊢ 𝑡 : 𝑇 with an extra rule to ascribe a type to 𝑦 based on the value 𝜌 (𝑦).
The small-step reduction relation 𝜌1 𝑡1 → 𝑡2 𝜌2 take a store 𝜌1 and a term 𝑡1 as input and
non-deterministically outputs a new term 𝑡2 in an extended store 𝜌2.

Definition 5.5.1: DOT: Reduction relation

Reduction 𝜌1 𝑡1 → 𝑡2 𝜌2

As in Section 2.2, the superscript in 𝑡𝑥 emphasizes that 𝑥 may appear free in 𝑡 .

𝜌 {𝑧 ⇒ 𝑑
𝑧} → 𝑣 𝜌, (𝑣 : 𝑑𝑣) with 𝑣 fresh

𝜌 𝑣1.𝑚(𝑣2) → 𝑡
𝑣2 𝜌, (𝑣 : 𝑑𝑣) if 𝜌 (𝑣1) ∋ (𝑚(𝑥) = 𝑡𝑥 )

𝜌1 𝑒 [𝑡1] → 𝑒 [𝑡2] 𝜌2 if 𝜌1 𝑡1 → 𝑡2 𝜌2
where 𝑒 ⩴ [] | [] .𝑚(𝑡) | 𝑣 .𝑚( [])

With these definitions in mind, we can state the main type safety theorem:

Theorem 5.5.2: DOT: Type Safety (original version)

∀𝜌, 𝑡, 𝑇 . if (𝜌 ∅ ⊢ 𝑡 : 𝑇 ), then:

either ∃𝑦. (𝑡 = 𝑦 and 𝑦 ∈ dom(𝜌))
or ∃𝜌1, 𝑡1. ((𝜌 𝑡 → 𝑡1 𝜌1) and (𝜌1 ∅ ⊢ 𝑡1 : 𝑇 )) .

7See https://github.com/smarter/minidot/commit/a832f266757ee7af154de5f12be972637549080b
8This was first noted by [Hu 2019]. This rule is also present in [Barendregt, Coppo, and Dezani-Ciancaglini

1983].
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In other words, given an empty context and a store 𝜌 , if 𝑡 has type 𝑇 then either 𝑡 is a concrete
value 𝑦 in the store 𝜌 , or 𝑡 can be reduced to some term 𝑡1 in a store 𝜌1 such that 𝑡1 preserves
the type 𝑇 .

This definition of type safety is peculiar: it combines together progress and preservation [Wright
and Felleisen 1994] but it is weaker than the usual definition of preservation which normally
applies to all possible reductions. This is explicitly called out in [Rompf and Amin 2016,
Section 6]:

“Note that Definition 1 assumes deterministic execution. Otherwise the statement
would need to be modified to consider all possible following configurations.”

This weaker statement naturally leads to a weaker induction hypothesis and this is where our
attempt at adding And-I’ runs into troubles.

Theorem 5.5.3
oopslaDOT extended with And-I’ is sound.

Proof sketch. The original proof of Theorem 5.5.2 goes by induction on the derivation of 𝜌 ∅ ⊢
𝑡 : 𝑇 . Since store typing extends the regular typing judgment, we now have an extra case to
handle.

Case
𝜌 ∅ ⊢ 𝑡 : 𝑇 𝜌 ∅ ⊢ 𝑡 : 𝑈

(And-I’)
𝜌 ∅ ⊢ 𝑡 : 𝑇 ∧𝑈

Suppose 𝑡 = 𝑦, then by inversion we must have𝑦 ∈ dom(𝜌) which finishes the case. Otherwise,
by the IH we have 𝜌1, 𝑡1, 𝜌2, 𝑡2 such that

(𝜌 𝑡 → 𝑡1 𝜌1) and (𝜌1 ∅ ⊢ 𝑡1 : 𝑇 )
(𝜌 𝑡 → 𝑡2 𝜌2) and (𝜌2 ∅ ⊢ 𝑡2 : 𝑈 )

To complete the case, we need to find some 𝜌 ′, 𝑡 ′ such that

(𝜌 𝑡 → 𝑡
′
𝜌
′) and (𝜌 ′ ∅ ⊢ 𝑡 ′ : 𝑇 ∧𝑈 )

But since the definition of the reduction relation does not specify an evaluation order, we
cannot prove that (𝜌 𝑡 → 𝑡1 𝜌1) and (𝜌 𝑡 → 𝑡2 𝜌2) imply 𝑡1 = 𝑡2 and 𝜌1 = 𝜌2, so we are stuck.

♦

To remedy this, we must generalize the type safety statement to subsume the usual preservation
property:
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Theorem 5.5.4: DOT: Type Safety (generalized version)

∀𝜌, 𝑡, 𝑇 . if (𝜌 ∅ ⊢ 𝑡 : 𝑇 ), then we have both:

1. either ∃𝑦. (𝑡 = 𝑦 and 𝑦 ∈ dom(𝜌))
or ∃𝜌1, 𝑡1.(𝜌 𝑡 → 𝑡1 𝜌1),

2. and ∀𝜌2, 𝑡2. ((𝜌 𝑡 → 𝑡2 𝜌2) implies (𝜌2 ∅ ⊢ 𝑡2 : 𝑇 )) .

Proof. The updated definition of type_safety is part of
https://github.com/smarter/minidot/commit/cee565e9452095ae3788f92cd912fd1733b8d54b. ■

Finally, we can complete our proof:

Theorem 5.5.5
oopslaDOT with the type safety definition from Theorem 5.5.4 can be soundly extended
with And-I’.

Proof. By induction on the derivation of 𝜌 ∅ ⊢ 𝑡 : 𝑇 as before.

Case
𝜌 ∅ ⊢ 𝑡 : 𝑇 𝜌 ∅ ⊢ 𝑡 : 𝑈

(And-I’)
𝜌 ∅ ⊢ 𝑡 : 𝑇 ∧𝑈

We prove each part of the theorem separately. Part 1. follows directly by the IH. For part 2.,
by the IH we find that

∀𝜌2, 𝑡2. ((𝜌 𝑡 → 𝑡2 𝜌2) implies (𝜌2 ∅ ⊢ 𝑡2 : 𝑇 ) and (𝜌2 ∅ ⊢ 𝑡2 : 𝑈 ))

And so And-I’ finishes the case.
The mechanized version of this proof is also part of
https://github.com/smarter/minidot/commit/cee565e9452095ae3788f92cd912fd1733b8d54b.

■

For the record, we note that adding And-I’ to oopslaDOT is not enough to recover all possible
uses of And-I in wfDOT, because And-I’ does not cover the strict typing judgment Γ ⊢ 𝑥 :! 𝑇 .
While this did not end up being needed in our proofs, we did mechanize this generalization in
https://github.com/smarter/minidot/commit/0f146a40c24d7b34a2100fe6d56dca1e6400d968.

5.5.2 Meta-theory
This is where the work we did in previous chapters starts to pay off: most of the proof of type-
preserving translation detailed in subsection 4.3.2 can be easily adapted to PS. We explicitly
detail a few lemmas and theorems.

Theorem 5.5.6: Subtyping preservation

If Γ ⊩Δ, Γ ⊢ 𝑆 wf and Γ ⊢ 𝑆 <: 𝑇 then Δ ⊢ |𝑆 | <: |𝑇 |.
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5.5 Translation

Proof. By induction on the derivation of Γ ⊢ 𝑆 <: 𝑇 , cases GS-Refl, GS-Var and GS-Trans

proceed like the corresponding case in Theorem 4.3.11. Case PS-Class proceeds like GS-Class.
Cases PS-And11, PS-And12 and PS-And2 proceed by the IH on each premise followed respec-
tively by And11, And12 and And2.

Case
Γ ⊢ 𝑆 <: 𝑇, 𝑇 <: 𝑆

(PS-Inv)
Γ ⊢ 𝐶 [𝑆] <: 𝐶 [𝑇 ]

Let tparams(𝐶) = 𝑋 <: ..., then

(IH)
Δ ⊢ 𝑆 <: 𝑇, 𝑇 <: 𝑆

(Typ)
Δ ⊢ (𝑋 = 𝑆) <: (𝑋 = 𝑇 )

(2.4.5, BindX)
Δ ⊢ |𝐶 [𝑆] | <: |𝐶 [𝑇 ] |

■

Lemma 5.5.7: Class translation preserves value parameters

If Γ ⊩Δ, Γ ⊢ 𝑇 wf and vparams(𝑇 ) = 𝑓 : 𝑈 , then Δ ⊢ |𝑇 | <: (𝑓 () : |𝑈 |)

Proof. By induction on the derivation of vparams(𝑇 ). We only show the additional cases
compared to Lemma 4.3.12. Case PG-Trait is trivial. Case PG-AndR is symmetrical to PG-AndL.

Case
vparams(𝑇2) ⊆ vparams(𝑇1)

(PG-AndL)
vparams(𝑇1 &𝑇2) ≔ vparams(𝑇1)

By the IH, Δ ⊢ |𝑇1 | <: (𝑓 () : |𝑈 |) and by And11, Δ ⊢ |𝑇1 &𝑇2 | <: |𝑇1 |. GS-Trans finishes the
case.

■

As we discussed in subsection 5.5.1, Lemma 4.3.13 cannot be directly carried over given the
subtyping rules of DOT, but it can be replaced by a lemma on typing derivations that makes
use of And-I’.

Lemma 5.5.8: Class translation preserves methods

If Γ ⊩Δ, Γ ⊢ 𝑇0 wf and and Δ ⊢ 𝑡0 : |𝑇0 |, 𝑡 : |𝜎𝑈 |, |𝑉 | <: |𝜎𝑃 | where 𝜎 = [𝑉 /𝑌 ]
then mtype(𝑚, 𝑇0) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0 implies Δ, 𝑥mtag : {_ ⇒ 𝑌 = |𝑉 |} ⊢
𝑡0.𝑚(𝑥mtag, 𝑡) : |𝜎𝑈0 |.

Proof. By induction on the derivation of mtype(𝑚, 𝑇0).
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Case
(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑈 ) : 𝑈0 = 𝑒0

⁓⁓⁓
) ∈ mdecls(𝐶 [𝑇 ])

(PM-Impl)
mtype(𝑚, 𝐶 [𝑇 ]) ≔ [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0)

By the same reasoning used in case GM-Class of Lemma 4.3.13, we find |Γ | ⊢ |𝐶 [𝑇 ] | <:
(𝑚(mtag : |𝑌 <: 𝑃 |, 𝑥 : |𝑈 |) : |𝑈0 |). So by subsumption, |Γ | ⊢ 𝑡0 : (𝑚(mtag : |𝑌 <: 𝑃 |, 𝑦 : |𝑈 |) :
|𝑈0 |) and the rest of the case proceeds like case GT-Invk of Theorem 4.3.18.

Case
parents(𝑁 ) = 𝑃 (def𝑚 ...) ∉ mdecls(𝑁 )

(PM-Super)
mtype(𝑚, 𝑁 ) ≔ mtype(𝑚, & 𝑃)

By PS-Class and PS-And2, Γ ⊢ 𝑁 <: & 𝑃 , so by Theorem 5.5.6 and subsumption, |Γ | ⊢ 𝑡0 :
|& 𝑃 |. The IH finishes the case.

Case

mtypeΓ (𝑚, 𝑇1) = [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉𝐿

mtypeΓ (𝑚, 𝑇2) = [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉𝑅 (PM-AndLR)
mtypeΓ (𝑚, 𝑇1 &𝑇2) ≔ [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉𝐿 &𝑉𝑅

We have |Γ | ⊢ 𝑡0 : |𝑇1 | ∧ |𝑇2 | so by subsumption, |Γ | ⊢ 𝑡0 : |𝑇1 |, 𝑡0 : |𝑇2 | and by the IH,

|Γ |, 𝑥mtag : {_ ⇒ 𝑌 = |𝑉 |} ⊢ 𝑡0.𝑚(𝑥mtag, 𝑡) : |𝜎𝑉𝐿 |
|Γ |, 𝑥mtag : {_ ⇒ 𝑌 = |𝑉 |} ⊢ 𝑡0.𝑚(𝑥mtag, 𝑡) : |𝜎𝑉𝑅 |

Therefore by And-I’,

|Γ |, 𝑥mtag : {_ ⇒ 𝑌 = |𝑉 |} ⊢ 𝑡0.𝑚(𝑥mtag, 𝑡) : |𝜎𝑉𝐿 | ∧ |𝜎𝑉𝑅 |

By definition, |𝜎𝑉𝐿 | ∧ |𝜎𝑉𝑅 | = |𝜎𝑉𝐿 & 𝜎𝑉𝑅) | = |𝜎 (𝑉𝐿 &𝑉𝑅) | which finishes the case.
■

Theorem 5.5.9: Typing translation is type-preserving

If Γ ⊩Δ and Γ ⊢ 𝑒 : 𝑇 , then Δ ⊢ |𝑒 |Γ : |𝑇 |.

Proof. By induction on the derivation of Γ ⊢ 𝑒 : 𝑇 . All cases but GT-Invk proceed as in Theo-
rem 4.3.18.
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Case

Γ ⊢ 𝑒0 : 𝑇0 mtype(𝑚, boundΓ (𝑇0)) = [𝑌 <: 𝑃] → (𝑦 : 𝑈 ) → 𝑈0

𝜎 = [𝑉 /𝑌 ] Γ ⊢ 𝑉 wf, 𝑉 <: 𝜎𝑃, 𝑒 : 𝑆, 𝑆 <: 𝜎𝑈
(GT-Invk)

Γ ⊢ 𝑒0.𝑚[𝑉 ] (𝑒) : 𝜎𝑈0

We have |𝑒0.𝑚[𝑉 ] (𝑒) |Γ = let 𝑥mtag = {_ ⇒ 𝑌 = |𝑉 |} in |𝑒0 |Γ .𝑚(𝑥mtag, |𝑒 |Γ). By the IH, Δ ⊢
|𝑒0 |Γ : |𝑇0 |, 𝑒 : |𝑆 |. Let𝑇 ′

0 = boundΓ (𝑇0), then by subsumption, Lemma 5.4.1 and Theorem 5.5.6
we have Δ ⊢ |𝑒0 |Γ : |𝑇 ′

0 | and Lemma 5.5.8 finishes the case.
■

Lemma 5.5.10: Class table translation is well-typed

∅ ⊢
DOT

{ct ⇒ ⦇𝐶𝑇 ⦈} : {ct ⇒ ⟦𝐶𝑇⟧}.

Proof. Generalizing the proof of Lemma 4.3.22 to handle traits is easy since traits are translated
like classes but have no constructors. ■

Theorem 5.5.11: Program translation is type-preserving

If ∅ ⊢
PS
𝑇 wf and ∅ ⊢

PS
𝑒 : 𝑇 then ∅ ⊢

DOT
let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |∅ : |𝑇 |.

Proof. Like Theorem 4.3.23 but using Theorem 5.5.9 and Lemma 5.5.10. ■
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6 Pathless Lattice Scala

Figure 6.1: PLS: Syntax

𝑥, 𝑦, 𝑧 Variable
𝐵, 𝐶, 𝐷, 𝐸 Class name
𝑓 , 𝑔 Class parameter
𝑚 Method name
𝑋𝐶 Class variable
𝑋𝑚 Method variable
𝑋, 𝑌, 𝑍 ⩴ 𝑋𝐶 | 𝑋𝑚 Type variable
𝑁, 𝑃, 𝑄 ⩴ 𝐶 [𝑇 ] Non-variable
𝑆, 𝑇 , 𝑈 , 𝑉 ⩴ Type
𝑋 | 𝑁 | 𝑆 &𝑇 | 𝑆 | 𝑇

Γ ⩴ Context
∅ | Γ, 𝑥 : 𝑇 | Γ, 𝑋 <: 𝑁

𝐿 ⩴ Class declaration
class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑇 ) ◁ 𝑃 (𝑓 ), 𝑄 {𝑀}
trait𝐶 [𝑋𝐶 <: 𝑁 ] ◁𝑄 {𝐻 ; 𝑀}

𝐻 ⩴ Abstract method
def𝑚[𝑋𝑚 <: 𝑁 ] (𝑥 : 𝑇 ) : 𝑇0

𝑀 ⩴ Concrete method
𝐻 = 𝑒0

𝑏 ⩴ Boolean literal
true | false

𝑒 ⩴ Expression
𝑥 variable
𝑒.𝑓 parameter access
𝑒0.𝑚[𝑇 ] (𝑒) method call
new𝐶 [𝑇 ] (𝑒) object
𝑏 boolean
if 𝑒0 then 𝑒1 else 𝑒2 conditional

𝜎, 𝜏 ⩴ [𝑇 /𝑋 ] Type substitution

In this chapter, we present Pathless Lattice Scala (PLS), an extension of the Pathless Scala calculus
which completes the subtyping lattice by adding union types and a bottom type Nothing. To
motivate the need for union types, we simultaneously introduce the standard conditional form
if 𝑒0 then 𝑒1 else 𝑒2 and a Boolean type.

The additional subtyping rules for union types end up invalidating some of the meta-theory of
PS. We compensate for this by introducing a new partial well-formedness judgment which we
make use of in the type-preserving translation proof. The proof from PS is otherwise readily
adapted. The more complex member selection rules for union types motivate the introduction
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of an algorithmic subtyping relation to keep our typing judgment implementable.

6.1 Syntax
We call 𝑆 | 𝑇 the union of 𝑆 and 𝑇 . In a conditional expression if 𝑒0 then 𝑒1 else 𝑒2, 𝑒0 must be a
Boolean,

Like Object, Boolean and Nothing are valid class names while not being defined in the class
table 𝐶𝑇 . For subtyping and linearization to work with Boolean we extend the definition of
parents from Figure 5.2 with,1

parents(Boolean) ≔ Object

Nothing is not a valid input to most lookup functions including parents since member selection
on Nothing is never well-typed in Scala, instead it is special-cased in the subtyping judgment
in Figure 6.3 with rule LS-Nothing.

6.2 Declarative subtyping and well-formedness
In FGJ (and by extension PS), the well-formedness judgment makes use of the subtyping
judgment: an applied class type 𝐶 [𝑇 ] is only well-formed if its type arguments 𝑇 conform
to the substituted upper-bounds of the corresponding type parameters. By contrast, in DOT
it’s the subtyping judgment which (implicitly) makes use of the well-formedness judgment:
only well-formed types may appear in a DOT subtyping judgment. This impedance mismatch
required us to make use of Lemma 4.2.4 to prove subtyping preservation. But while this lemma
can be carried over to PS, it no longer holds in PLS due to the additional subtyping rules LS-Or21

and LS-Or22 defined in Figure 6.3.

In both of these rules, the conclusion involves a type which does not appear in any premise and
for which we therefore cannot infer well-formedness. We could try to handle this by explicitly
requiring the types that appear “out of thin air” to be well-formed:

Γ ⊢ 𝑆 <: 𝑇1 Γ ⊢ 𝑇2 wf

Γ ⊢ 𝑆 <: 𝑇1 | 𝑇2
(LS-Or21-Alt)

Γ ⊢ 𝑆 <: 𝑇2 Γ ⊢ 𝑇1 wf

Γ ⊢ 𝑆 <: 𝑇1 | 𝑇2
(LS-Or22-Alt)

But that would make well-formedness and subtyping mutually recursive which would compli-
cate our proofs. To break the cycle, we define a notion of partial well-formedness in Figure 6.2
which more closely matches DOT well-formedness: 𝑇 is partially well-formed in Γ if all free
variables in 𝑇 are defined in Γ. We also reuse the well-formedness convention from the presen-
tation of DOT in subsection 2.2.1: all subtyping and typing rules implicitly require the types
involved to be partially well-formed. It is easy to show that a partially well-formed PLS type
translates to a well-formed DOT type (Theorem 6.5.1).

1In real Scala, primitive classes such as Boolean are subtypes of AnyVal, not Object, and the true top type is
Any. We do not model this additional complexity here. Note that this hierarchy might change in the future as the
JVM might retrofit primitives to extend Object [Dan Smith 2022].
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6.2 Declarative subtyping and well-formedness

Figure 6.2: PLS: Partial Well-formedness

Free variables fv(𝑇 ) ≔ {𝑋 }

fv(𝑋 ) := {𝑋 }

fv(𝐶 [𝑇 ]) ≔
⋃︂

fv(𝑇 )

fv(𝑇1 &𝑇2) ≔ fv(𝑇1) ∪ fv(𝑇2)

fv(𝑇1 | 𝑇2) ≔ fv(𝑇1) ∪ fv(𝑇2)

Partially Well-formed Type Γ ⊢ 𝑇 pwf

fv(𝑇 ) ⊆ dom(Γ)
Γ ⊢ 𝑇 pwf

Partially Well-formed Environment Γ pwf

∅ pwf Γ, 𝑋 <: 𝑁 ⊢ 𝑁 pwf

Γ, 𝑋 <: 𝑁 pwf

Γ ⊢ 𝑇 pwf

Γ, 𝑥 : 𝑇 pwf

As expected, well-formedness implies partial well-formedness (Lemma 6.4.1). While having
an extra judgment might seem inelegant, this split closely matches the behavior of the Scala
compiler where most bound-checks are deferred to a compiler phase after typechecking to
avoid cycles that could lead to compiler crashes.

6.2.1 Algorithmic subtyping
Until now, every subtyping judgment we’ve defined has been declarative and not algorith-
mic, in particular they all included a transitivity rule. Declarative judgments are convenient
when working on the meta-theory, but to really model the behavior of the language as it is
implemented, we should ensure that subtyping can actually be implemented by defining an

Figure 6.3: PLS: Declarative Subtyping

All rules from Figure 5.3 are carried over.
Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ Nothing <: 𝑇 (LS-Nothing)

Γ ⊢ 𝑆1 <: 𝑇, 𝑆2 <: 𝑇
Γ ⊢ 𝑆1 | 𝑆2 <: 𝑇

(LS-Or1)

Γ ⊢ 𝑆 <: 𝑇1

Γ ⊢ 𝑆 <: 𝑇1 | 𝑇2
(LS-Or21)

Γ ⊢ 𝑆 <: 𝑇2

Γ ⊢ 𝑆 <: 𝑇1 | 𝑇2
(LS-Or22)
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Figure 6.4: PLS: Well-formedness

All rules from from Figure 5.4 are carried over.
Well-formed type Γ ⊢ 𝑇 wf

Γ ⊢ Nothing wf (WFL-Nothing) Γ ⊢ Boolean wf (WFL-Boolean)

Γ ⊢ 𝑇1, 𝑇2 wf

Γ ⊢ 𝑇1 | 𝑇2 wf
(WFL-Or)

algorithmic judgment. Such a judgment will also come in handy in the next section, where we
will make use of algorithmic subtyping in the definition of the function baseTypes to ensure
that it is algorithmic itself.

Typically, algorithmic subtyping judgments are designed to be syntax-driven, where the conclu-
sion of separate rules do not overlap. But if we only want to demonstrate that an algorithmic
implementation is possible without regards for its complexity, this is not necessary: if multiple
rules are applicable, an implementation can simply try them all in order until one succeeds. We
only need to ensure that all rules are mode-correct as defined in [Dunfield and Krishnaswami
2021, § 3.1]:

“A rule is mode-correct if there is a strategy for recursively deriving the premises
such that two conditions hold:

1. The premises are mode-correct: for each premise, every input meta-variable
is known (from the inputs to the rule’s conclusion and the outputs of earlier
premises).

2. The conclusion is mode-correct: if all premises have been derived, the outputs
of the conclusion are known.”

The only rule in our system which does not satisfy these conditions is GS-Trans. To eliminate
it without losing expressiveness, we replace the rules GS-Var and PS-Class (which both reveal
the upper-bound of a type) by rules AS-Var and AS-Class in Figure 6.5. The key difference
is that the new rules additionally recurse on the revealed upper-bound. Other rules are left
unchanged except for the use of ⊢▶ over ⊢.

We prove that algorithmic subtyping is sound with respect to declarative subtyping in Theo-
rem 6.4.4 and we conjecture that it is complete in Conjecture 6.4.6.

6.3 Typing
Declaration typing is unchanged from PS. The expression typing rules for booleans and condi-
tionals in Figure 6.6 are unsurprising. The definition of bound needs to be extended to handle
unions, and here it is helpful to carefully study the behavior of Scala once again.
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Figure 6.5: PLS: Algorithmic Subtyping

Γ ⊢▶ 𝑆 <: 𝑇
When multiple rules are applicable, the algorithm picks the first one.

Γ ⊢▶ 𝑆 <: 𝑆 (AS-Refl)

Γ ⊢▶ Nothing <: 𝑇 (AS-Nothing)

Γ(𝑋 ) = 𝑁 Γ ⊢▶ 𝑁 <: 𝑇

Γ ⊢▶ 𝑋 <: 𝑇
(AS-Var)

Γ ⊢▶ 𝑆 =:= 𝑇

Γ ⊢▶ 𝐶 [𝑆] <: 𝐶 [𝑇 ]
(AS-Inv)

𝑃 ∈ parents(𝐶 [𝑆]) Γ ⊢▶ 𝑃 <: 𝐵 [𝑇 ]
Γ ⊢▶ 𝐶 [𝑆] <: 𝐵 [𝑇 ]

(AS-Class)

Γ ⊢▶ 𝑆 <: 𝑇1, 𝑆 <: 𝑇2

Γ ⊢▶ 𝑆 <: 𝑇1 &𝑇2
(AS-And2)

Γ ⊢▶ 𝑆1 <: 𝑇, 𝑆2 <: 𝑇
Γ ⊢▶ 𝑆1 | 𝑆2 <: 𝑇

(AS-Or1)

Γ ⊢▶ 𝑆1 <: 𝑇
Γ ⊢▶ 𝑆1 & 𝑆2 <: 𝑇

(AS-And11)
Γ ⊢▶ 𝑆 <: 𝑇1

Γ ⊢▶ 𝑆 <: 𝑇1 | 𝑇2
(AS-Or21)

Γ ⊢▶ 𝑆2 <: 𝑇
Γ ⊢▶ 𝑆1 & 𝑆2 <: 𝑇

(AS-And12)
Γ ⊢▶ 𝑆 <: 𝑇2

Γ ⊢▶ 𝑆 <: 𝑇1 | 𝑇2
(AS-Or22)

Given x : L | R and the class table,

trait L { def foo(): A }

trait R { def foo(): B }

Can we attribute a type to x.foo()? Early on during its development, the Scala 3 compiler
answered this positively and typed x.foo() as A | B. But this was later changed to emit an
error because foo() is not defined in a common base class of L and R.2 One argument in favor
of this restriction is that in a typical Design by Contract approach [Meyer 1992], the behavior
of a method in a class or trait is determined not just by its type but by the contract that every
implementation of the method must conform too. A contract is usually specified informally
as documentation comments and may include required pre-conditions and guaranteed post-
conditions.3 Methods with the same name defined in unrelated traits need not adhere to any
common contract, so figuring out the behavior of x.foo() would force users to manually

2See https://github.com/lampepfl/dotty/pull/1550#pullrequestreview-2438518 for the historical discussion of this
change.

3A good example of design by contract in the wild is java.lang.Comparable.
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Figure 6.6: PLS: Typing rules

The definitions from Figure 5.7 are carried over.

Expression typing Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑏 : Boolean (LT-Bool)

Γ ⊢ 𝑒0 : Boolean
Γ ⊢ 𝑒1 : 𝑇1 Γ ⊢ 𝑒2 : 𝑇2

Γ ⊢ if 𝑒0 then 𝑒1 else 𝑒2 : 𝑇1 | 𝑇2
(LT-Cond)

determine the union of the contracts of foo() in L and in R. In fact, these contracts might even
be mutually exclusive, making all calls to x.foo() illegal.

We can replicate the behavior of Scala 3 by defining boundΓ (𝑆 | 𝑇 ) to be the intersection of the
common base types of 𝑆 and 𝑇 . Our definition makes use of a baseTypes helper function which
generalizes linearization to arbitrary types.4

Note that this definition of bound is not quite as expressive as we’d like, given x: Foo[A] |

Foo[B] and the class table,

trait Foo[X] {

def foo(): X

}

We’d like x.foo() to have type A | B, but this expression doesn’t typecheck because the only
common parent class of the union is Object. In actual Scala this isn’t a problem because the
compiler can take advantage of use-site variance [Igarashi and Viroli 2006; Odersky et al. 2021b]
to approximate Foo[A] | Foo[B] as Foo[? >: A & B <: A | B]. Extending our calculus to
support use-site variance remains future work.

6.4 Meta-theory

Lemma 6.4.1: Well-formedness implies partial well-formedness

Γ ⊢ 𝑇 wf implies Γ ⊢ 𝑇 pwf

Proof. Straightforward induction on the derivation of Γ ⊢ 𝑇 wf. ■

4Note that unlike in the definition of linearization in Subsection 5.3.2, we use list union ∪ in place of the stricter
+⃗ since we do not want to prevent selections on prefixes of type𝐶 [𝑆] &𝐶 [𝑇 ] even if we cannot prove in the current
context that 𝑆 and 𝑇 are equal.
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Figure 6.7: PLS: bound and baseTypes

The definitions of bound and baseTypes from Figure 5.5 are carried over.

boundΓ (𝑇 ) ≔ &𝑁

boundΓ (𝑆 | 𝑇 ) ≔ & baseTypesΓ (𝑆 | 𝑇 ) (B-Or)

baseTypesΓ (𝑇 ) ≔ 𝑁

baseTypesΓ (𝑋 ) ≔ baseTypesΓ (Γ(𝑋 )) (BT-Var)

baseTypesΓ (𝑁 ) ≔ L(𝑁 ) (BT-Class)

baseTypesΓ (𝑆 &𝑇 ) ≔ baseTypesΓ (𝑆) ∪ baseTypesΓ (𝑇 ) (BT-And)

Γ ⊢▶ 𝑇 <: 𝑆

baseTypesΓ (𝑆 | 𝑇 ) ≔ baseTypesΓ (𝑆)
(BT-Or1)

Γ ⊢▶ 𝑆 <: 𝑇

baseTypesΓ (𝑆 | 𝑇 ) ≔ baseTypesΓ (𝑇 )
(BT-Or2)

baseTypesΓ (𝑆) = 𝑃 baseTypesΓ (𝑇 ) = 𝑃
′

baseTypesΓ (𝑆 | 𝑇 ) ≔
[︁
𝑄 ∈ 𝑃

|︁|︁ ∃𝑄 ′ ∈ 𝑃 ′. Γ ⊢▶ 𝑄 <: 𝑄 ′
, 𝑄

′
<: 𝑄

]︁ (BT-Or)

Lemma 6.4.2: Correctness of baseTypes

If 𝑁 ∈ baseTypesΓ (𝑇 ), then Γ ⊢ 𝑇 <: 𝑁 .

Proof. By induction on baseTypesΓ (𝑇 ). Case BT-Or2 mirrors case BT-Or1.

Case baseTypesΓ (𝑋 ) ≔ baseTypesΓ (Γ(𝑋 )) (BT-Var)

By GS-Var, Γ ⊢ 𝑋 <: Γ(𝑋 ) and by the IH, Γ ⊢ Γ(𝑋 ) <: 𝑁 . GS-Trans finishes the case.

Case baseTypesΓ (𝑃) ≔ L(𝑃) (BT-Class)

By definition parents(𝑃) ⊆ L(𝑃) and PS-Class finishes the case.

Case baseTypesΓ (𝑇1 &𝑇2) ≔ baseTypesΓ (𝑇1) ∪ baseTypesΓ (𝑇2) (BT-And)

Either 𝑁 ∈ baseTypesΓ (𝑇1) in which case Γ ⊢ 𝑇1 <: 𝑁 and PS-And11 finishes the case or
𝑁 ∈ baseTypesΓ (𝑇2) in which case Γ ⊢ 𝑇2 <: 𝑁 and PS-And12 finishes the case.
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Case
Γ ⊢ 𝑇 <: 𝑆

(BT-Or1)
baseTypesΓ (𝑆 | 𝑇 ) ≔ baseTypesΓ (𝑆)

Γ ⊢ 𝑇 <: 𝑆
(LS-Or1)

Γ ⊢ 𝑆 | 𝑇 <: 𝑆
(IH)

Γ ⊢ 𝑆 <: 𝑁
(GS-Trans)

Γ ⊢ 𝑆 | 𝑇 <: 𝑁

Case
baseTypesΓ (𝑆) = 𝑃 baseTypesΓ (𝑇 ) = 𝑃

′

(BT-Or)
baseTypesΓ (𝑆 | 𝑇 ) ≔

[︁
𝑄 ∈ 𝑃

|︁|︁ ∃𝑄 ′ ∈ 𝑃 ′. Γ ⊢ 𝑄 <: 𝑄 ′
, 𝑄

′
<: 𝑄

]︁
By definition, there exists 𝑁 ′ ∈ baseTypesΓ (𝑇2) such that Γ ⊢ 𝑁 <: 𝑁 ′

, 𝑁
′
<: 𝑁 .

𝑁 ∈ baseTypesΓ (𝑆) (IH)
Γ ⊢ 𝑆 <: 𝑁

𝑁
′ ∈ baseTypesΓ (𝑇 ) (IH)

Γ ⊢ 𝑇 <: 𝑁 ′ Γ ⊢ 𝑁 ′
<: 𝑁

(GS-Trans)
Γ ⊢ 𝑇 <: 𝑁

(LS-Or1)
Γ ⊢ 𝑆 | 𝑇 <: 𝑁

■

Lemma 6.4.3: Correctness of bound
If boundΓ (𝑆) = 𝑇 , then Γ ⊢ 𝑆 <: 𝑇 .

Proof. By induction on the derivation of boundΓ (𝑆). We only show the additional case compared
to Lemma 5.4.1.

Case boundΓ (𝑆 | 𝑇 ) ≔ & baseTypesΓ (𝑆 | 𝑇 ) (B-Or)

Let 𝑁 = baseTypesΓ (𝑆 | 𝑇 ). By Lemma 6.4.2, Γ ⊢ 𝑆 | 𝑇 <: 𝑁 and repeated uses of PS-And2

finish the case.
■

Theorem 6.4.4: Soundness of algorithmic subtyping

If Γ ⊢▶ 𝑆 <: 𝑇 then Γ ⊢ 𝑆 <: 𝑇 .

Proof. By straightforward induction on the derivation of Γ ⊢▶ 𝑆 <: 𝑇 . ■

Conjecture 6.4.5: Transitivity of algorithmic subtype relation

If Γ ⊢▶ 𝑆 <: 𝑇 and Γ ⊢▶ 𝑇 <: 𝑈 then Γ ⊢▶ 𝑆 <: 𝑈 .

Proof sketch. [Kennedy and Pierce 2007, Appendix B] proves transitivity of algorithmic sub-
typing for a calculus similar to FGJ but with definition-site variance, we believe this argument
could be adapted to our calculus.
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6.5 Translation

Suppose the derivation of Γ ⊢▶ 𝑆 <: 𝑇 has size𝑚 and the derivation of Γ ⊢▶ 𝑇 <: 𝑈 has size 𝑛.
We proceed by induction on𝑚 + 𝑛, with a case analysis on the final rules of both derivations.

In the original proof, the difficult case involves the equivalent of AS-Inv on the left and AS-Class

on the right:

Γ ⊢▶ 𝑆 ′ =:= 𝑇 ′

Γ ⊢▶ 𝐶 [𝑆 ′] <: 𝐶 [𝑇 ′]
(AS-Inv    )

𝑃
′ ∈ parents(𝐶 [𝑇 ′])
Γ ⊢▶ 𝑃 ′ <: 𝐵 [𝑉 ]

Γ ⊢▶ 𝐶 [𝑇 ′] <: 𝐵 [𝑈 ′]
(AS-Class )

By definition, 𝑃 ′ = [𝑇 ′/𝑋 ]𝑃 where 𝑃 ∈ parents(𝐶 [𝑋 ]). If we can show that Γ ⊢▶ [𝑆 ′/𝑋 ]𝑃 <:

𝐵 [𝑉 ] then we can finish the case by AS-Class. In the original proof, this is done by showing that
for all𝑉 ,𝑉 ′, if there is a derivation of Γ ⊢▶ [𝑆 ′/𝑋 ]𝑉 <:𝑉 ′ that has size < 𝑛, then Γ ⊢▶ [𝑇 ′/𝑋 ]𝑉 <:

𝑉
′ is derivable. This requires a nested induction on the derivation of Γ ⊢▶ [𝑆 ′/𝑋 ]𝑉 <: 𝑉 ′

that makes judicious use of the outer IH (hence the size requirement on the derivation of
Γ ⊢▶ [𝑆 ′/𝑋 ]𝑉 <: 𝑉 ′).

Given the sheer number of (sub-)cases involved and since we will anyway abandon transitivity
when we add type members in Chapter 7 to match the behavior of Scala, we did not attempt to
complete this proof. ♦

Conjecture 6.4.6: Algorithmic subtype is complete

If Γ ⊢ 𝑆 <: 𝑇 , then Γ ⊢▶ 𝑆 <: 𝑇 .

Proof sketch. By induction on the derivation of Γ ⊢ 𝑆 <: 𝑇 . Case GS-Trans relies on Conjec-
ture 6.4.5. ♦

6.5 Translation
Our encoding of Boolean is similar to the one presented in [Amin, Grütter, et al. 2016, § 5]
except we do not try to hide the implementation details of the type since this is not required for
type-preservation.

6.5.1 Meta-theory
We only show the most interesting changes compared to subsection 5.5.2.

Theorem 6.5.1: Partial well-formedness preservation

If Γ ⊩Δ and Γ ⊢ 𝑆 pwf then Δ ⊢ |𝑆 | wf.

Proof. We have fv(𝑆) ⊆ dom(Γ) and we need to prove fv( |𝑆 |) ⊆ dom(Δ). We proceed by
induction on the derivation of fv(𝑆). We only show the base case as all others follow directly
by the IH.
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Figure 6.8: Translating PLS types, expressions and definitions to DOT

All definitions from Figure 5.9 are carried over.

Type Translation |𝑇 | ≔ 𝑇
DOT

|𝑇1 | 𝑇2 | ≔ |𝑇1 | ∨ |𝑇2 |

|Boolean| ≔ ct.Boolean

|Nothing| ≔ ⊥

Expression Translation |𝑒 |Γ ≔ 𝑡
DOT

|true|Γ ≔ ct.true()

|false|Γ ≔ ct.false()

𝑥mtag is fresh
Γ ⊢ if 𝑒0 then 𝑒1 else 𝑒2 : 𝑇

|if 𝑒0 then 𝑒1 else 𝑒2 |Γ ≔ let 𝑥mtag = {_ ⇒ A = |𝑇 |} in |𝑒0 |Γ .if(𝑥mtag, |𝑒1 |Γ, |𝑒2 |Γ)

Class Table Translation ⦇𝐶𝑇 ⦈ ≔ 𝑑
DOT

⦇∅ ⦈ :=

Object = ⊤,
Boolean = (if(mtag : {_ ⇒ A : ⊥ .. ⊤}, t : mtag.A, f : mtag.A) : mtag.A),
true() : ct.Boolean = {_ ⇒ if(mtag, t, f) = t},
false() : ct.Boolean = {_ ⇒ if(mtag, t, f) = f}

Case fv(𝑋 ) := {𝑋 }

Since𝑋 ∈ dom(Γ), we have Γ ⊢ 𝑋 <: 𝑁 for some 𝑁 by GS-Var. By Lemma 4.3.6 and inversion
of EE-Typs, we must have Δ ⊢ |𝑍 | <: |𝑁 | and therefore Δ ⊢ |𝑋 | wf since DOT subtyping rules
only apply to well-formed types.

■

Theorem 6.5.2: Subtyping preservation

Suppose ct ∈ dom(Δ), Γ pwf and for all 𝑋 ∈ dom(Γ), Γ(𝑋 ) = 𝑁 implies Δ ⊢ |𝑋 | <: |𝑁 |.
Then Γ ⊢▶ 𝑆 <: 𝑇 implies Δ ⊢ |𝑆 | <: |𝑇 |.

Proof. Because PLS subtyping is only defined on partially well-formed types, we must have
Γ ⊢ 𝑆, 𝑇 pwf, so by Theorem 6.5.1, Δ ⊢ |𝑆 |, |𝑇 | wf. We proceed by induction on the derivation of
Γ ⊢ 𝑆 <: 𝑇 like in Theorem 5.5.6. The additional cases easily follow by the IH.
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6.5 Translation

■

Theorem 6.5.3: Typing translation is type-preserving

If Γ ⊩Δ and Γ ⊢ 𝑒 : 𝑇 , then Δ ⊢ |𝑒 |Γ : |𝑇 |.

Proof. By induction on the derivation of Γ ⊢ 𝑒 : 𝑇 . We only show the additional cases compared
to Theorem 5.5.9.

Case Γ ⊢ 𝑏 : Boolean (LT-Bool)

If 𝑏 = true then |𝑏 |Γ = ct.true() and

(Var)
Δ ⊢ ct : ⟦𝐶𝑇⟧

(Sub)
Δ ⊢ ct : {true() : |Boolean|}

(TApp’)
Δ ⊢ ct.true() : |Boolean|

Otherwise 𝑏 = false and the derivation proceeds similarly.

Case

Γ ⊢ 𝑒0 : Boolean
Γ ⊢ 𝑒1 : 𝑇1 Γ ⊢ 𝑒2 : 𝑇2 (LT-Cond)

Γ ⊢ if 𝑒0 then 𝑒1 else 𝑒2 : 𝑇1 | 𝑇2

We have |if 𝑒0 then 𝑒1 else 𝑒2 |Γ = let 𝑥mtag = {_ ⇒ A = |𝑇1 | 𝑇2 |} in |𝑒0 |Γ .if(𝑥mtag, |𝑒1 |Γ, |𝑒2 |Γ).
By the IH,

Δ ⊢ |𝑒0 |Γ : |Boolean|, |𝑒1 |Γ : |𝑇1 |, |𝑒2 |Γ : |𝑇2 |

By Theorem 6.5.2 and Sub,

Δ ⊢ |𝑒1 |Γ : |𝑇1 | 𝑇2 |, |𝑒2 |Γ : |𝑇1 | 𝑇2 |

Let Δ1 = Δ, 𝑥mtag : {_ ⇒ A = |𝑇1 | 𝑇2 |}, then by TApp’ and Sub,

Δ1 ⊢ |𝑒0 |Γ .if(𝑥mtag, |𝑒1 |Γ, |𝑒2 |Γ) : |𝑇1 | 𝑇2 |

And Let finishes the case.
■

Lemma 6.5.4: Class table translation is well-typed

∅ ⊢
DOT

{ct ⇒ ⦇𝐶𝑇 ⦈} : {ct ⇒ ⟦𝐶𝑇⟧}.

Proof. To generalize Lemma 5.5.10, we only need to show that our additions to the class table
typecheck: we can type Boolean by DTyp and “true” as well as “false” by TNew and DFun’. ■
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Theorem 6.5.5: Program translation is type-preserving

If ∅ ⊢
PLS
𝑇 wf and ∅ ⊢

PLS
𝑒 : 𝑇 then ∅ ⊢

DOT
let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |∅ : |𝑇 |.

Proof. Like Theorem 4.3.23 but using Theorem 6.5.3 and Lemma 6.5.4. ■
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7 Dependent Scala

In this chapter, we present Dependent Scala (DS), an extension of the Pathless Lattice Scala
calculus with type members. While our type-preserving translation forces us to define rather
complex declarative subtyping rules, we are able to define sound and simple algorithmic
subtyping rules that match the behavior of the Scala compiler.

Figure 7.1: DS: Syntax

𝑥, 𝑦, 𝑧 Variable
𝐵, 𝐶, 𝐷, 𝐸 Class name
𝐿 Type label
𝑓 , 𝑔 Class parameter
𝑚 Method name
𝑋𝐶 Class variable
𝑋𝑚 Method variable
𝑋, 𝑌, 𝑍 ⩴ 𝑋𝐶 | 𝑋𝑚 Type variable
𝑁, 𝑃, 𝑄 ⩴ 𝐶 [𝑇 ] Class type
𝑆, 𝑇 , 𝑈 , 𝑉 ⩴ Type
𝑋 | 𝑁 | 𝑆 &𝑇 | 𝑆 | 𝑇 | 𝑥 .𝐿

Γ ⩴ Context
∅ | Γ, 𝑥 : 𝑇 | Γ, 𝑋 <: 𝑁

𝐶𝐷 ⩴ Class declaration
class𝐶 [𝑋𝐶 <: 𝑁 ] (𝑓 : 𝑇 ) ◁ 𝑃 (𝑓 ), 𝑄 {𝑇𝐷 ; 𝑀}
trait𝐶 [𝑋𝐶 <: 𝑁 ] ◁𝑄 {𝑇𝐷 ; 𝐻 ; 𝑀}

𝑇𝐷 ⩴ Type declaration
type𝐿 >: 𝑆 <: 𝑇

𝐻 ⩴ Abstract method
def𝑚[𝑋𝑚 <: 𝑁 ] (𝑥 : 𝑇 ) : 𝑇0

𝑀 ⩴ Concrete method
𝐻 = 𝑒0

𝑏 ⩴ Boolean literal
true | false

𝑒 ⩴ Expression
𝑥 variable
𝑒.𝑓 parameter access
𝑥0.𝑚[𝑇 ] (𝑥) method call
new𝐶 [𝑇 ] (𝑒) object
𝑏 boolean
if 𝑒0 then 𝑒1 else 𝑒2 conditional
{val𝑥 = 𝑒1; 𝑒2} local block

𝜎, 𝜏 ⩴ [𝑇 /𝑋 ] Type substitution
𝜃 ⩴ [𝑦/𝑥] Variable substitution
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7.1 Syntax
To simplify this presentation, we impose a syntactical restriction that was not present in our
previous calculi: method calls may only involve variables as receiver and variables as arguments
(just like applications in wfDOT). We compensate for this loss of expressiveness by introducing
local block expressions {val𝑥 = 𝑒1; 𝑒2} which we can use to desugar regular method calls:

Definition 7.1.1: Method call desugaring

𝑥0 is fresh 𝑥 is fresh

𝑒0.𝑚[𝑇 ] (𝑒) 〜 {val𝑥0 = 𝑒0; val𝑥 = 𝑒; 𝑥0.𝑚[𝑇 ] (𝑥)}

This will not affect the semantics of our programs, but it means that the receiver of a method
must always be evaluated before its arguments because of the translation strategy we will use for
local blocks (Figure 7.12) and the way the reduction relation of DOT is defined (Definition 5.5.1).
Alternatively, we could have kept arbitrary method calls by generalizing DT-Invk to introduce
fresh variables if necessary and run avoidance on them like DT-Block does. This would be
closer to the actual compiler implementation but would make our typing judgment and proofs
related to it more complex for no obvious benefits.

7.2 Declarative subtyping and well-formedness
We extend the free variable judgment to account for free term variables (the definition of pwf
itself stays as-is).

In Scala, unlike DOT, a type selection 𝑥 .𝐿 is only well-formed if 𝑥 actually has a type member
named 𝐿.

Figure 7.2: PLS: (Partial) Well-formedness

All definitions from Figures 6.2 and 6.4 are carried over.

Free variables 𝑓 𝑣 (𝑇 ) ≔ {𝑋 , 𝑥 }

fv(𝑥 .𝐿) := {𝑥}

Well-formed type Γ ⊢ 𝑇 wf

Γ ⊢ 𝑥 : 𝑇 ttype(𝑥 .𝐿, boundΓ (𝑇 )) defined

Γ ⊢ 𝑥 .𝐿 wf
(WFD-TSel)

In the previous chapters, we were able to augment our subtyping relationship to handle inter-
section and union by simply adopting the corresponding DOT rules, but this simple recipe will
not work here. Recall the DOT type selection rule Sel1:
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Γ[𝑥 ] ⊢ 𝑥 :! (𝐿 : ⊥ .. 𝑇 )
Γ ⊢ 𝑥 .𝐿 <: 𝑇

(Sel1)

What rule could we define in our source calculus that would correspond to Sel1? Let’s try to
deconstruct the premise of this rule:

1. 𝑥 is typed in a truncated context eliminating all bindings to the right of 𝑥 . We can
mirror this in our source calculus but this means we’ll need to be careful about the
interplay of context truncation and the environment entailment relation we use in proofs
(Lemma 7.6.5).

2. 𝑥 is typed using the “strict typing” judgment which prevents uses of VarPack. Typing
in our source calculus is even stricter: there is no subsumption rules, and the type of
a variable is simply its type in the context (GS-Var). So we should be able to translate
Γ[𝑥 ] ⊢DS

𝑥 : 𝑈 , 𝑈 <: 𝑉 into Δ[𝑥 ] ⊢DOT
𝑥 :! |𝑉 | by relying on subtyping preservation to show

that Δ[𝑥 ] ⊢DOT
|𝑈 | <: |𝑉 |.

3. 𝑥 is typed as a type member declaration (𝐿 : ⊥ .. 𝑇 ). Declarations are not types in our
source calculus, but we can look up such declarations in a class given its name. We define
tdecls in Figure 7.4 for this purpose.

Based on these considerations, we can come up with the following rule:

Γ[𝑥 ] ⊢ 𝑥 : 𝑇 Γ[𝑥 ] ⊢ 𝑇 <: 𝐶 [𝑈 ]
(type𝐿 >: 𝑆1 <: 𝑆2) ∈ tdecls(𝐶) 𝜎 = [𝑈 /𝑋 ] 𝜃 = [𝑥/this]

Γ ⊢ 𝑥 .𝐿 <: 𝜎 (𝜃𝑆2)
(DS-Sel1-Unproven)

Note that as in previous calculi, we need to substitute type variables by type parameters when
looking up a member in some prefix 𝑥 , but since the bounds of a type member may refer to
another type member, “this” may appear free in the bounds and must be substituted by 𝑥 .

Unfortunately, we have not been able to extend our subtyping preservation proof to work
with DS-Sel1-Unproven. The issue is that given Γ(this) = 𝐷 [𝑋 ] and 𝑥 = this, then Δ ⊩Γ only

implies Δ ⊢ this :! ⟦𝐷⟧ |𝑋 | (via EE-This) and not Δ ⊢ this :! |𝐷 [𝑋 ] |, and strict typing prevents us
from using VarPack to recover the more precise type here. So the reasoning we used in point 2
above to recover DOT subsumption from DS subtyping breaks down.

To work around this technical issue, we define separate subtyping rules DS-SelThis1 and
DS-SelThis2 for type selections on this in Figure 7.3. These rules rely on the type member
lookup function ttype from Figure 7.4 which we now turn our attention to.

In Scala, the way we determine the bounds of a type member is analogous to the way we
determine the parameter types and result type of a method, and so our definition of ttype
naturally mirrors mtype, but unlike in past calculi, ttype also takes the prefix 𝑥 as input to
perform the substitution we mentioned above.
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Figure 7.3: DS: Subtyping

Γ ⊢ 𝑆 <: 𝑇

Γ ⊢ this : 𝐶 [𝑋 ]
ttype(this.𝐿, 𝐶 [𝑋 ]) = 𝑆1 .. 𝑆2

Γ ⊢ this.𝐿 <: 𝑆2
(DS-SelThis1)

Γ ⊢ this : 𝐶 [𝑋 ]
ttype(this.𝐿, 𝐶 [𝑋 ]) = 𝑆1 .. 𝑆2

Γ ⊢ 𝑆1 <: this.𝐿
(DS-SelThis2)

𝑥 ≠ this Γ ⊢ 𝑥 : 𝑇 Γ[𝑥 ] ⊢ 𝑇 <: 𝐶 [𝑈 ]
(type𝐿 >: 𝑆1 <: 𝑆2) ∈ tdecls(𝐶) 𝜎 = [𝑈 /𝑋 ] 𝜃 = [𝑥/this]

Γ ⊢ 𝑥 .𝐿 <: 𝜎 (𝜃𝑆2)
(DS-SelOther1)

𝑥 ≠ this Γ ⊢ 𝑥 : 𝑇 Γ[𝑥 ] ⊢ 𝑇 <: 𝐶 [𝑈 ]
(type𝐿 >: 𝑆1 <: 𝑆2) ∈ tdecls(𝐶) 𝜎 = [𝑈 /𝑋 ] 𝜃 = [𝑥/this]

Γ ⊢ 𝜎 (𝜃𝑆1) <: 𝑥 .𝐿
(DS-SelOther2)

When looking up the bounds of a type member defined in both operands of an intersection
in TT-AndLR, the returned bounds must “fit” within the bounds of each operand. This is
accomplished by taking the union of the lower bounds and the intersection of the upper
bounds. But note that nothing prevents the resulting bounds from being absurd, like Object ..
Nothing. Combined with subtyping transitivity this gives rise to the infamous “bad bounds”
problem [Rompf and Amin 2016, § 4.3]. This is where our choice of DOT as a compilation target
really starts to shine since it shields us from having to worry about this in our own proofs.

The lack of symmetry between DS-SelThis1 and DS-SelOther1 is unsatisfying, it would be nicer
if we could use ttype everywhere, but here again we run into technical difficulties as we would
need to simultaneously prove results about ttype and subtyping preservation. Thankfully, none
of the issues we’ve encountered in this section apply to the algorithmic subtyping judgment we
study next.

7.3 Algorithmic subtyping
We only need two rules for algorithmic subtyping of type selections: AS-Sel1 and AS-Sel2

defined in Figure 7.5. These rules use ttype to determine the bounds of a type selection. Since
ttype is only defined on non-variable types it cannot be directly called on the selection prefix.
And since the rules need to be mode-correct, we cannot simply materialize an upper-bound
“out of thin air” using subtyping. Instead, we rely on the lookup function bound to produce a
valid input for ttype, just like we did for mtype in previous calculi.

The most striking feature of our new rules is that they do not involve any context truncation,
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Figure 7.4: DS: Type lookup functions

Type declarations lookup tdecls(𝐶) = 𝑇𝐷{︄
class
trait

}︄
𝐶 [...] {𝑇𝐷, ... }

tdecls(𝐶) ≔ 𝑇𝐷

Type member names lookup tnames(𝐶) ≔ 𝐴

tdecls(𝑁 ) = type𝐿...
𝑃 = parents(𝑁 )

tnames(𝑁 ) ≔ tnames(𝑃) ∪ 𝐿

Type member lookup ttype(𝑥 .𝐿, 𝑇 ) = 𝑆1 .. 𝑆2

𝜃 = [𝑥/this] 𝜎 = [𝑇 /𝑋 ]
(type𝐿 >: 𝑆1<: 𝑆2) ∈ tdecls(𝐶)

ttype(𝑥 .𝐿, 𝐶 [𝑇 ]) ≔ 𝜎 (𝜃𝑆1) .. 𝜎 (𝜃𝑆2)
(TT-Member)

parents(𝑁 ) = 𝑃 (type𝐿 ...) ∉ tdecls(𝑁 )
ttype(𝑥 .𝐿, 𝐶 [𝑇 ]) ≔ ttype(𝑥 .𝐿, & 𝑃)

(TT-Super)

ttype(𝑥 .𝐿, 𝑇1) = 𝑆1 .. 𝑆2
ttype(𝑥 .𝐿, 𝑇2) = 𝑆 ′1 .. 𝑆 ′2

ttype(𝑥 .𝐿, 𝑇1 &𝑇2) ≔ (𝑆1 | 𝑆 ′1) .. (𝑆2 & 𝑆
′
2)

(TT-AndLR)

ttype(𝑥 .𝐿, 𝑇1) = 𝑆1 .. 𝑆2
ttype(𝑥 .𝐿, 𝑇2) undefined

ttype(𝑥 .𝐿, 𝑇1 &𝑇2) ≔ 𝑆1 .. 𝑆2

(TT-AndL)

ttype(𝑥 .𝐿, 𝑇1) undefined
ttype(𝑥 .𝐿, 𝑇2) = 𝑆1 .. 𝑆2

ttype(𝑥 .𝐿, 𝑇1 &𝑇2) ≔ 𝑆1 .. 𝑆2

(TT-AndR)

and yet we are able to prove them sound with respect to the declarative subtyping rules in
Theorem 7.5.6! The key to this trick lies in the expressiveness difference between the declarative
and algorithmic rules.

In the previous chapter, we conjectured that the algorithmic subtyping relation was transitive
and therefore complete (Conjecture 6.4.6). This is no longer true in Dependent Scala as illustrated
by the following example,
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Figure 7.5: DS: Algorithmic Subtyping

All rules from from Figure 6.5 are carried over.
Γ ⊢▶ 𝑆 <: 𝑇

Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2
Γ ⊢▶ 𝑆2 <: 𝑇
Γ ⊢▶ 𝑥 .𝐿 <: 𝑇

(AS-Sel1)

Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑇1 .. 𝑇2
Γ ⊢▶ 𝑆 <: 𝑇1

Γ ⊢▶ 𝑆 <: 𝑥 .𝐿
(AS-Sel2)

trait A[S <: Object, T <: Object] {

type M >: S <: T

def id(x: S): T = x

}

Let Γ = (S <: Object, T <: Object, this : A[S, T], x : S), then to ensure that the body of id is
well-typed we show,

(DS-SelThis2)
Γ ⊢ S <: this.M

(DS-SelThis1)
Γ ⊢ this.M <: T

(GS-Trans)
Γ ⊢ S <: T

But this code isn’t valid Scala. Indeed, it would not be practical for the compiler to consider
the bound of every type member in scope for every subtype check.1 Note that this loss of
transitivity is not a fundamental loss of expressiveness. It is always possible to manually tell
the compiler to consider a specific intermediate type:

def conv(x: S): this.M = x

def id(x: S): T = conv(x)

Thanks to this restriction, we can establish that context truncation preserves algorithmic
subtyping (Lemma 7.5.3) which is key to the proof of soundness of algorithmic subtyping
(Theorem 7.5.6).

The additional cases for bound and baseTypes in Figure 7.6 are straightforward, but BT-Sel

1On the other hand, if a subtyping check involves type selections, the compiler will consider each bound of each
type member involved. [Nieto 2017] shows that this can lead to type-checking taking an amount of time exponential
in the number of declared type members.
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implies that baseTypes is now defined in terms of bound, and because of B-Or, bound was
already defined in terms of baseTypes, making them mutually recursive. Furthermore, because
of AS-Sel1 and AS-Sel2, algorithmic subtyping is now defined in terms of bound, and since
BT-Or already relied on algorithmic subtyping, all three judgments are now mutually recursive.
This isn’t a problem per se but it means that some lemmas such as Lemma 7.5.3 will need to be
proved by simultaneous induction on all three judgments at once, c’est la vie!

Figure 7.6: DS: bound and baseTypes

The definitions of bound and baseTypes from Figure 6.7 are carried over.

bound of type boundΓ (𝑇 ) ≔ &𝑁

Γ ⊢ 𝑥 : 𝑇 ttype(𝑥 .𝐿, boundΓ (𝑇 )) = 𝑆1 .. 𝑆2
boundΓ (𝑥 .𝐿) ≔ boundΓ (𝑆2)

(B-Sel)

baseTypesΓ (𝑇 ) ≔ 𝑁

Γ ⊢ 𝑥 : 𝑇 ttype(𝑥 .𝐿, boundΓ (𝑇 )) = 𝑆1 .. 𝑆2
baseTypesΓ (𝑥 .𝐿) ≔ baseTypesΓ (𝑆2)

(BT-Sel)

7.4 Typing
7.4.1 Expression Typing

Figure 7.7: DS: Expression Typing rules

Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑥0 : 𝑇0 mtype(𝑥0.𝑚, boundΓ (𝑇0)) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

𝜎 = [𝑉 /𝑌 ] Γ ⊢ 𝑉 wf, 𝑉 <: 𝜎𝑃, 𝑥 : 𝑆, 𝑆 <: 𝜎𝑈

Γ ⊢ 𝑥0.𝑚[𝑉 ] (𝑥 ) : 𝑇0
(DT-Invk)

Γ ⊢ 𝑒1 : 𝑆 Γ, 𝑥 : 𝑆 ⊢ 𝑒2 : 𝑇 Γ, 𝑥 : 𝑆 ⊢ 𝑇 ⇑𝑥 𝑇 ′

Γ ⊢ {val𝑥 = 𝑒1; 𝑒2} : 𝑇 ′ (DT-Block)

Method calls

In previous chapters, we used the lookup function mtype(𝑚, 𝑇 ) to determine how to type a
method selection 𝑥 .𝑚 when the type of 𝑥 is upper-bounded by 𝑇 . mtype looks up the declared
method type and takes care of substituting the class type variables based on 𝑇 to produce a
valid type. But in Dependent Scala, this is not enough, a method type might refer to a local
type member:
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Figure 7.8: DS: Redefinition of mtype

Method type lookup mtype(𝑥 .𝑚, 𝑇 ) ≔ [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

𝜃 = [𝑥/this] 𝜎 = [𝑇 /𝑋 ]
(def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑈 ) : 𝑈0 = 𝑒0

⁓⁓⁓
) ∈ mdecls(𝐶 [𝑋 ])

mtype(𝑥 .𝑚, 𝐶 [𝑇 ]) ≔ [𝑌 <: 𝜎 (𝜃 𝑃)] → (𝑦 : 𝜎 (𝜃𝑈 )) → 𝜎 (𝜃𝑈0)
(DM-Impl)

parents(𝑁 ) = 𝑃 (def𝑚 ...) ∉ mdecls(𝑁 )

mtype(𝑥 .𝑚, 𝑁 ) ≔ mtype(𝑥 .𝑚, & 𝑃)
(DM-Super)

mtype(𝑥 .𝑚, 𝑇1) = [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉1

mtype(𝑥 .𝑚, 𝑇2) = [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉2

mtype(𝑥 .𝑚, 𝑇1 &𝑇2) ≔ [𝑌 <: 𝑃] ⇒ (𝑥 : 𝑆) ⇒ 𝑉1 &𝑉2
(DM-AndLR)

mtype(𝑥 .𝑚, 𝑇1) defined
mtype(𝑥 .𝑚, 𝑇2) undefined

mtype(𝑥 .𝑚, 𝑇1 &𝑇2) ≔ mtype(𝑥 .𝑚, 𝑇1)
(DM-AndL)

mtype(𝑥 .𝑚, 𝑇1) undefined
mtype(𝑥 .𝑚, 𝑇2) defined

mtype(𝑥 .𝑚, 𝑇1 &𝑇2) ≔ mtype(𝑥 .𝑚, 𝑇2)
(DM-AndR)

trait Zero {

type Elem >: Nothing <: Object
def zero(): this.Elem

}

If x : Zero, then the type of x.zero() should be x.Elem and not this.Elem, so we need to substitute
the prefix in the method type. Since mtype already does type substitution, it makes sense to
extend it to also perform term substitution by keeping track of the prefix, this also mirrors
how we defined ttype earlier. In the redefinition of mtype in Figure 7.8, only DM-Impl uses the
prefix, the other rules simply pass it along in recursive calls and are otherwise identical to the
rules in Figure 5.5.

Rule DT-Invk in Figure 7.7 looks deceptively similar to GT-Invk but is in fact much more
powerful since it supports dependent method types. To avoid writing down explicit variable
substitutions, we rely on the identification of terms up to 𝛼-renaming to force the parameter
names returned by mtype and the names of the variables passed as arguments to coincide. As
an example, the following class table is well-typed:

104



7.4 Typing

class X ◁ Object{}

trait HasA { type A >: Nothing <: Object }

class HasX ◁ HasA { type A >: X <: X }

class Foo ◁ Object {

def foo(hasA: HasA, a: hasA.A): hasA.A = a

def bar(hasX: HasX, x: X): X = foo(hasX, x)

}

Local block

The type of a local block {val𝑥 = 𝑒1; 𝑒2} must be a super-type of the type of 𝑒2, but it cannot
mention 𝑥 since it is not part of the enclosing context. This motivates the introduction in
Figure 7.9 of algorithmic judgments for variable avoidance [Pierce and Turner 2000, § 5.3; Nieto
2017, § 4.3].

In the judgment Γ ⊢ 𝑆 ⇕𝑥 𝑇1 .. 𝑇2, the inputs are Γ, 𝑆 and 𝑥 and the outputs are 𝑇1 and 𝑇2. The
rules ensure that 𝑥 does not appear in either 𝑇1 or 𝑇2 and that Γ ⊢ 𝑇1 <: 𝑆, 𝑆 <: 𝑇2 as shown
in Theorem 7.5.7. All rules but A-Absent implicitly assume that 𝑥 ∈ 𝑆 . This is not enough to
make avoidance syntax-directed since A-Dealias and A-Super have the same inputs, but the
output of the judgment is still deterministic because these rules have non-overlapping premises
(we write Γ ⊬▶ 𝑆 <: 𝑆 ′ to mean “Γ ⊢▶ 𝑆 <: 𝑆 ′ does not hold”).

For convenience, we also define Γ ⊢ 𝑆 ⇓𝑥 𝑇1 and Γ ⊢ 𝑆 ⇑𝑥 𝑇2 which return respectively the
lower-bound and upper-bound produced by avoidance.

Ultimately, we only use the upper-bound in DT-Invk, but defining both is necessary for rule
A-Dealias which we motivate with the following example:

class C[T] ◁ Object {

def c(): Object = new Object

}

class A ◁ Object {

type M >: X <: X
}

class B ◁ Object {

def foo(): C[X] =

{val x = new A; new C[x.M]}.c()

}

Given Γ ⊢ this : B, x : A, we find Γ ⊢ new C[x.M] : C[x.M] by GT-New. But since x.M is both
lower- and upper-bounded by X, we also have Γ ⊢ C[x.M] <: C[X] by PS-Inv. A-Dealias takes
advantage of this to give a more precise type to the local block than just Object.
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Figure 7.9: DS: Variable avoidance in types

Promotion Γ ⊢ 𝑆 ⇑𝑥 𝑇

Γ ⊢ 𝑆 ⇕𝑥 𝑇1 .. 𝑇2
Γ ⊢ 𝑆 ⇑𝑥 𝑇2

Demotion Γ ⊢ 𝑆 ⇓𝑥 𝑇

Γ ⊢ 𝑆 ⇕𝑥 𝑇1 .. 𝑇2
Γ ⊢ 𝑆 ⇓𝑥 𝑇1

Avoidance Γ ⊢ 𝑆 ⇕𝑥 𝑇1 .. 𝑇2

𝑥 ∉ fv(𝑆)
Γ ⊢ 𝑆 ⇕𝑥 𝑆 .. 𝑆

(A-Absent)

Γ ⊢ 𝑆1 ⇕𝑥 𝑇1 .. 𝑇 ′
1 Γ ⊢ 𝑆2 ⇕𝑥 𝑇2 .. 𝑇 ′

2

Γ ⊢ (𝑆1 & 𝑆2) ⇕𝑥 (𝑇1 &𝑇2) .. (𝑇 ′
1 &𝑇

′
2 )

(A-And)

Γ ⊢ 𝑆1 ⇕𝑥 𝑇1 .. 𝑇 ′
1 Γ ⊢ 𝑆2 ⇕𝑥 𝑇2 .. 𝑇 ′

2

Γ ⊢ (𝑆1 | 𝑆2) ⇕𝑥 (𝑇1 | 𝑇2) .. (𝑇 ′
1 | 𝑇

′
2 )

(A-Or)

Γ ⊢ 𝑥 : 𝑇 ttype(𝑥 .𝐿, boundΓ (𝑇 )) = 𝑆1 .. 𝑆2
Γ ⊢ 𝑆1 ⇓𝑥 𝑆 ′1 Γ ⊢ 𝑆2 ⇑𝑥 𝑆 ′2

Γ ⊢ 𝑥 .𝐿 ⇕𝑥 𝑆 ′1 .. 𝑆 ′2
(A-Sel)

Γ ⊢ 𝑆 ⇕𝑥 𝑆 ′ .. 𝑆 ′′ Γ ⊢▶ 𝑆 <: 𝑆 ′

Γ ⊢ 𝐶 [𝑆] ⇕𝑥 𝐶 [𝑆 ′] .. 𝐶 [𝑆 ′]
(A-Dealias)

Γ ⊢ 𝑆 ⇕𝑥 𝑆 ′ .. 𝑆 ′′ Γ ⊬▶ 𝑆 <: 𝑆 ′

class𝐶 [𝑋 <: 𝑁 ] ◁ 𝐵 [𝑈 ]
𝜎 = [𝑆/𝑋 ] Γ ⊢ 𝐵 [𝜎𝑈 ] ⇑𝑥 𝑇
Γ ⊢ 𝐶 [𝑆] ⇕𝑥 Nothing .. 𝑇

(A-Super)

Ideally, we would like avoidance to give us the “best” approximations possible for any given
type. In particular, for promotion we might conjecture that,

“If Γ ⊢ 𝑆 ⇑𝑥 𝑇 then Γ ⊢▶ 𝑆 <: 𝑈 implies Γ ⊢▶ 𝑇 <: 𝑈 .”

But this statement is false, as demonstrated by the following counter-example:
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class Inv[X] ◁ Object; trait X; trait Y

trait HasA { type A >: X | Y <: X & Y }

trait HasB { type B >: X <: Y }

class HasBImpl(a: HasA) ◁ Object, HasB {

type B = a.A

}

class Test ◁ Object {

def foo(a: HasA): Inv[a.A] = {

val b: HasB = new HasBImpl(a);

new Inv[b.B]

}

}

Given Γ = this : Test, a : HasA, b : HasB, we find Γ ⊢ Inv[b.B] ⇑b Object even though we can
derive Γ ⊢▶ Inv[b.B] <: Inv[a.A]. Once again, having wildcards would be helpful here since
we could enhance avoidance such that Γ ⊢ Inv[b.B] ⇑b Inv[? >: X <: Y]. This would be
good enough since by wildcard capture we should be able to derive Γ ⊢▶ Inv[? >: X <: Y] =:=
Inv[a.A].

7.4.2 Declaration Typing
Method typing is generalized in DT-Method to support dependent methods like the ones we
saw in the previous subsection. In both proper classes and traits, we ensure (via DT-Class and
DT-Trait) that the bounds of type declarations are well-formed and that all type members
are valid overrides. Override checking for type members (in Figure 7.10) proceeds much like
override checking for methods (in Figure 5.8), but there is no abstract/concrete distinction.

Figure 7.10: DS: Overriding

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
𝑃 ∈ L(𝐶 [𝑋 ]) implies overrideΓ (𝐿, 𝑁, 𝑃)

isProperClass(𝐶) defined and ttype(this.𝐿, 𝐶 [𝑋 ]) = 𝑆1 .. 𝑆2 implies Γ ⊢▶ 𝑆1 <: 𝑆2
isValidΓ (𝐿)

ttype(this.𝐿, 𝑃) defined implies:
• ttype(this.𝐿, 𝑁 )= 𝑆1 .. 𝑆2
• ttype(this.𝐿, 𝑃) = 𝑇1 .. 𝑇2
• Γ ⊢ 𝑇1 <: 𝑆1, 𝑆2 <: 𝑇2

overrideΓ (𝐿, 𝑁, 𝑃)

A type member overrides another if it has equal or more precise bounds. In proper classes
only, isValid additionally checks that the lower bound of each type member is a subtype of its
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upper-bound (using algorithmic subtyping since this should be determined without relying on
the bounds of the type member itself). This is critical for our translation: we need to ensure that
there exists a valid instantiation of each type member, otherwise we won’t be able to typecheck
the translated constructor since type members of DOT objects are not allowed to be abstract.

Figure 7.11: DS: Declaration Typing rules

Method typing Γ ⊢𝑚 ok

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
mtype( this.𝑚, 𝐶 [𝑋 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

Δ0 = Γ, 𝑌 <: 𝑃 Δ𝑖+1 = Δ𝑖 , 𝑥𝑖 : 𝑈𝑖

Δ0 ⊢ 𝑃 wf Δ𝑖 ⊢ 𝑈𝑖+1 wf Δ𝑛 ⊢ 𝑈0 wf
mbody( this.𝑚, 𝐶 [𝑋 ]) = 𝑒0 implies Δ𝑛 ⊢ 𝑒0 : 𝐸0, 𝐸0 <: 𝑈0

𝑄 ∈ parents(𝐶 [𝑋 ]) implies overrideΓ (𝑚, 𝐶 [𝑋 ], 𝑄)
Γ ⊢𝑚 ok

(DT-Method)

Class typing ⊢ 𝐶 ok

class𝐶 [𝑋 <: 𝑁 ] (𝑔 : 𝑈 , 𝑓 : 𝑇 ) ◁ 𝑃 (𝑔), 𝑄 {type𝐴 >: 𝑆1 <: 𝑆2; def𝑚 ...}
L(𝐶 [𝑋 ]) defined isProperClass(𝑃) isTrait(𝑄)

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ] Γ ⊢ 𝑆1, 𝑆2 wf
𝑋 <: 𝑁 ⊢ 𝑁, 𝑈 , 𝑇 , 𝑃, 𝑄 wf Γ ⊢𝑚 ok vparams(𝑃) = 𝑔 : 𝑈
mnames𝑎𝑏𝑠 (𝐶) = ∅ 𝑚

′ ∈ mnames(𝐶) implies isValidΓ (𝑚′)
𝐴
′ ∈ tnames(𝐶) implies isValid(𝐴′)

⊢ 𝐶 ok
(DT-Class)

trait𝐶 [𝑋 <: 𝑁 ] ◁𝑄 {type𝐴 >: 𝑆1 <: 𝑆2; def𝑚 ...}
L(𝐶 [𝑋 ]) defined isTrait(𝑄)

Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
𝑋 <: 𝑁 ⊢ 𝑁, 𝑄

Γ ⊢ 𝑆1, 𝑆2 wf Γ ⊢𝑚 ok
𝑚

′ ∈ mnames(𝐶) implies isValidΓ (𝑚′)
𝐴
′ ∈ tnames(𝐶) implies isValidΓ (𝐴′)

⊢ 𝐶 ok
(DT-Trait)

7.5 Meta-theory

Lemma 7.5.1

If 𝑋 <: 𝑁, this : 𝐶 [𝑋 ] ⊢ 𝑇 pwf, 𝑥 ∈ dom(Γ) and Γ ⊢ 𝑆 pwf, then Γ ⊢
[𝑆/𝑋 ] ( [𝑥/this]𝑇 ) pwf.

Proof. We must have fv(𝑇 ) ⊆ {𝑋, this}, therefore fv( [𝑆/𝑋 ] ( [𝑥/this]𝑇 )) ⊆ (fv(𝑆) ∪ {𝑥}) ⊆
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dom(Γ). ■

Lemma 7.5.2: Partial Well-formedness of type member lookup

If ttype(𝑥 .𝐿, 𝑈 ) = 𝑆1 .. 𝑆2, 𝑥 ∈ dom(Γ) and Γ ⊢ 𝑈 wf then Γ ⊢ 𝑆1, 𝑆2 pwf.

Proof. By induction on the definition of ttype(𝑥 .𝐿,𝑈 ). We only show the base case as the others
follow directly by the IH.

Case

𝜃 = [𝑥/this] 𝜎 = [𝑇 /𝑋 ]
(type𝐿 >: 𝑆1<: 𝑆2) ∈ tdecls(𝐶)

(TT-Member)
ttype(𝑥 .𝐿, 𝐶 [𝑇 ]) ≔ 𝜎 (𝜃𝑆1) .. 𝜎 (𝜃𝑆2)

By inversion of ⊢ 𝐶 ok via either DT-Class or DT-Trait,

𝑋 <: 𝑁, this : 𝐶 [𝑋 ] ⊢ 𝑆1, 𝑆2 pwf

By inversion of Γ ⊢ 𝐶 [𝑇 ] wf, we must have Γ ⊢ 𝑇 wf. Therefore by Lemma 7.5.1, Γ ⊢
𝜎 (𝜃𝑆1), 𝜎 (𝜃𝑆2) pwf.

■

Lemma 7.5.3: Context truncation preserves algorithmic subtyping

Let Γ = Γ1, Γ2. If Γ pwf and Γ1 ⊢ 𝑆, 𝑇 pwf, then
1. Γ ⊢▶ 𝑆 <: 𝑇 implies Γ1 ⊢▶ 𝑆 <: 𝑇
2. baseTypesΓ (𝑆) defined implies baseTypesΓ (𝑆) = baseTypesΓ1 (𝑆) and

baseTypesΓ1 (𝑆) pwf
3. boundΓ (𝑆) defined implies boundΓ (𝑆) = boundΓ1

(𝑆) and boundΓ1
(𝑆) pwf

Proof. By simultaneous induction on the size of the derivations of Γ ⊢▶ 𝑆 <: 𝑇 , baseTypesΓ (𝑆)
and boundΓ (𝑆). We only show a few cases.

Case
Γ(𝑋 ) = 𝑁 Γ ⊢▶ 𝑁 <: 𝑇

(AS-Var)
Γ ⊢▶ 𝑋 <: 𝑇

By inversion of Γ1 ⊢ 𝑋 wf, 𝑋 ∈ dom(Γ1) and so by definition, Γ1(𝑋 ) = Γ(𝑋 ). By part 1. of the
IH, Γ1 ⊢▶ 𝑁 <: 𝑇 and AS-Var finishes the case.

Case baseTypesΓ (𝑋 ) ≔ baseTypesΓ (Γ(𝑋 )) (BT-Var)

By the same reasoning as in the previous case, Γ1(𝑋 ) = Γ(𝑋 ). Part 2. of the IH finishes the
case.
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Case boundΓ (𝑋 ) ≔ Γ(𝑋 ) (B-Var)

Immediate from Γ1(𝑋 ) = Γ(𝑋 ).

Case

Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2
Γ ⊢▶ 𝑥 .𝐿 <: 𝑆1 (AS-Sel1)
Γ ⊢▶ 𝑥 .𝐿 <: 𝑇

By inversion of Γ1 ⊢ 𝑥 .𝐿 pwf, 𝑥 ∈ dom(Γ1). By inversion of Γ ⊢ 𝑥 : 𝑈 via GT-Var, Γ(𝑥) = 𝑈 .
Therefore by GT-Var again, Γ1 ⊢ 𝑥 : 𝑈 and by inversion of Γ1 pwf, Γ1 ⊢ 𝑈 pwf. Let 𝑈 ′

=

boundΓ (𝑈 ). By part 3. of the IH, 𝑈 ′
= boundΓ1

(𝑈 ) and Γ1 ⊢ 𝑈 ′ pwf.
By Lemma 7.5.2, Γ ⊢ 𝑆1 wf so by part 1. of the IH, Γ1 ⊢▶ 𝑥 .𝐿 <: 𝑆1 and AS-Sel1 finishes the
case.

Case
Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2

(BT-Sel)
baseTypesΓ (𝑥 .𝐿) ≔ baseTypesΓ (𝑆2)

By the same reasoning as in the previous case, Γ1 ⊢ 𝑥 :𝑈 , Γ1 ⊢𝑈 pwf, boundΓ (𝑈 ) = boundΓ1
(𝑈 ).

By part 2. of the IH, baseTypesΓ (𝑆2) = baseTypesΓ1 (𝑆2) and Γ1 ⊢ baseTypesΓ1 (𝑆2) pwf. BT-Sel

finishes the case.

Case
Γ ⊢ 𝑦 : 𝑈 ttype(𝑦.𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2

(B-Sel)
boundΓ (𝑦.𝐿) ≔ boundΓ (𝑆2)

Similar to the previous case but using part 3. of the IH and B-Sel.
■

Lemma 7.5.4
If 𝑥 ≠ this, Γ ⊢ 𝑥 : 𝑈 , Γ[𝑥 ] ⊢ 𝑈 <: 𝑈 ′, ttype(𝑥 .𝐿, 𝑈 ′) = 𝑆1 .. 𝑆2 and Γ[𝑥 ] ⊢ 𝑆1, 𝑆2 wf, then

1. Γ ⊢ 𝑥 .𝐿 <: 𝑆2
2. Γ ⊢ 𝑆1 <: 𝑥 .𝐿

Proof. We only show part 1. since part 2. mirrors it. We proceed by induction on the derivation
of ttype(𝑥 .𝐿, 𝑈 ′). Cases TT-Super, TT-AndL, TT-AndR follow by the IH and transitivity.

Case

𝜃 = [𝑥/this] 𝜎 = [𝑇 /𝑋 ]
(type𝐿 >: 𝑆 ′1<: 𝑆

′
2) ∈ tdecls(𝐶)

(TT-Member)
ttype(𝑥 .𝐿, 𝐶 [𝑇 ]) ≔ 𝜎 (𝜃𝑆 ′1) .. 𝜎 (𝜃𝑆 ′2)

By DS-SelOther1.
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Case

ttype(𝑥 .𝐿, 𝑇1) = 𝑆1 .. 𝑆2
ttype(𝑥 .𝐿, 𝑇2) = 𝑆 ′1 .. 𝑆 ′2 (TT-AndLR)

ttype(𝑥 .𝐿, 𝑇1 &𝑇2) ≔ (𝑆1 | 𝑆 ′1) .. (𝑆2 & 𝑆
′
2)

(Trans, PS-And11)
Γ[𝑥 ] ⊢ 𝑈 <: 𝑇1

(IH 1.)
Γ[𝑥 ] ⊢ 𝑥 .𝐿 <: 𝑆2

(Trans, PS-And12)
Γ[𝑥 ] ⊢ 𝑈 <: 𝑇2

(IH 1.)
Γ[𝑥 ] ⊢ 𝑥 .𝐿 <: 𝑆 ′2

(PS-And2)
Γ[𝑥 ] ⊢ 𝑥 .𝐿 <: 𝑆2 & 𝑆

′
2

■

Because bound and baseTypes are now mutually recursive, Lemmas 6.4.2 and 6.4.3 must be
proved simultaneously.

Lemma 7.5.5
1. If 𝑁 ∈ baseTypesΓ (𝑆), then Γ ⊢ 𝑆 <: 𝑁 .
2. If boundΓ (𝑆) = 𝑇 , then Γ ⊢ 𝑆 <: 𝑇 .

Proof. By simultaneous induction on the size of the derivations of baseTypesΓ (𝑆) and boundΓ (𝑆).
We only show a few cases.

Case
Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2

(BT-Sel)
baseTypesΓ (𝑥 .𝐿) ≔ baseTypesΓ (𝑆2)

By part 1 of the IH, Γ ⊢ 𝑆2 <: 𝑁 . If 𝑥 = this, then boundΓ (𝑈 ) = 𝑈 = 𝐶 [𝑋 ] and by DS-SelThis1,
Γ ⊢ 𝑥 .𝐿 <: 𝑆2. Otherwise, by part 2. of the IH, Γ ⊢ 𝑈 <: boundΓ (𝑈 ) and by Lemma 7.5.4,
Γ ⊢ 𝑥 .𝐿 <: 𝑆2 too. Therefore in either case, GS-Trans finishes the case.

Case
Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2

(B-Sel)
boundΓ (𝑥 .𝐿) ≔ boundΓ (𝑆2)

By part 2 of the IH, Γ ⊢ 𝑆2 <: 𝑇 and the rest of the case proceeds like in the previous case.
■

Theorem 7.5.6: Soundness of algorithmic subtyping

If Γ pwf, Γ ⊢▶ 𝑆 <: 𝑇 then Γ ⊢ 𝑆 <: 𝑇 .

Proof. By induction on the derivation of Γ ⊢▶ 𝑆 <: 𝑇 as in Theorem 6.4.4. We only show the
additional case AS-Sel1 since AS-Sel2 proceeds similarly.
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Case

Γ ⊢ 𝑥 : 𝑈 ttype(𝑥 .𝐿, boundΓ (𝑈 )) = 𝑆1 .. 𝑆2
Γ ⊢▶ 𝑆2 <: 𝑇 (AS-Sel1)
Γ ⊢▶ 𝑥 .𝐿 <: 𝑇

By inversion of Γ ⊢ 𝑥 : 𝑈 via GT-Var, we have Γ(𝑥) = 𝑈 , therefore by inversion of Γ pwf,
Γ[𝑥 ] ⊢ 𝑈 wf. Let 𝑈 ′

= boundΓ (𝑈 ).

Subcase 𝑥 = this

In this case,𝑈 ′
= 𝑈 = 𝐶 [𝑋 ] and

(DS-SelThis1)
Γ ⊢ this.𝐿 <: 𝑆2

(IH)
Γ ⊢ 𝑆2 <: 𝑇

(GS-Trans)
Γ ⊢ this.𝐿 <: 𝑇

Subcase 𝑥 ≠ this
By Lemma 7.5.3,𝑈 ′

= boundΓ[𝑥 ]
(𝑈 ) and Γ[𝑥 ] ⊢ 𝑈 ′ pwf.

(7.5.5)
Γ[𝑥 ] ⊢ 𝑈 <: boundΓ[𝑥 ]

(𝑈 )
(7.5.2)

Γ[𝑥 ] ⊢ 𝑆2 pwf
(7.5.4)

Γ ⊢ 𝑥 .𝐿 <: 𝑆2
(IH)

Γ ⊢ 𝑆2 <: 𝑇
(GS-Trans)

Γ ⊢ 𝑥 .𝐿 <: 𝑇
■

Theorem 7.5.7: Correctness of Variable Avoidance
If Γ ⊢ 𝑆 ⇕𝑥 𝑇1 .. 𝑇2 then

1. 𝑥 ∉ fv(𝑇1) and Γ ⊢ 𝑇1 <: 𝑆
2. 𝑥 ∉ fv(𝑇2) and Γ ⊢ 𝑆 <: 𝑇2

Proof. By induction on the derivation of Γ ⊢ 𝑆 ⇕𝑥 𝑇1 .. 𝑇2. We only show a few cases.

Case
Γ ⊢ 𝑆 ⇕𝑥 𝑆 ′ .. 𝑆 ′′ Γ ⊢▶ 𝑆 <: 𝑆 ′

(A-Dealias)
Γ ⊢ 𝐶 [𝑆] ⇕𝑥 𝐶 [𝑆 ′] .. 𝐶 [𝑆 ′]

By part 1 of the IH, 𝑥 ∉ fv(𝑆 ′), so by definition 𝑥 ∉ fv(𝐶 [𝑆 ′]) which proves part 1 of the case.
By Theorem 7.5.6, Γ ⊢ 𝑆 <: 𝑆 ′ and by part 2 of the IH, Γ ⊢ 𝑆 ′ <: 𝑆 , therefore PS-Inv finishes
part 2 of the case.
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Case

class𝐶 [𝑋 <: 𝑁 ] ◁ 𝐵 [𝑈 ]
𝜎 = [𝑆/𝑋 ] Γ ⊢ 𝐵 [𝜎𝑈 ] ⇑𝑥 𝑇

(A-Super)
Γ ⊢ 𝐶 [𝑆] ⇕𝑥 Nothing .. 𝑇

Part 1 is easy. For Part 2, by inversion of Γ ⊢ 𝐵 [𝜎𝑈 ] ⇑𝑥 𝑇 and by part 2. of the IH we must
have 𝑥 ∉ fv(𝐵 [𝜎𝑈 ]) and Γ ⊢ 𝐵 [𝜎𝑈 ] <: 𝑇 . By PS-Class, Γ ⊢ 𝐶 [𝑆] <: 𝐵 [𝜎𝑈 ] and GS-Trans

finishes the case.
■

7.6 Translation
The new cases in the translation are defined in Figure 7.12. We translate DS type members as
DOT type members and therefore DS type selections as DOT type selections. Local blocks are
easily represented using our let-binding syntactic sugar. Translating a type member 𝐴 into a
type ⟦𝐴⟧ is straightforward, but for proper classes we also need a declaration ⦇𝐴 ⦈ which forces
us to arbitrarily pick one of the bound of the type member. Class typing ensures that this is a
valid choice as discussed in subsection 7.4.2.

7.6.1 Meta-theory
We only show the most interesting changes compared to subsection 6.5.1.

We cannot directly carry over Lemma 4.3.10 because “this” may be free in the method types and
type member bounds declared in 𝐶 or one of its base class which prevents us from performing
a rewriting step critical to the proof. Instead, we replace it by two less powerful lemmas which
will be good enough for our purposes.

Lemma 7.6.1

Given tparams(𝐶) = 𝑋 <: 𝑁 , Γ ⊩Δ, then Δ ⊢ |𝐶 [𝑇 ] | <: |𝜎 | (⟦vparams(𝐶)⟧ ∧
baseArgs(𝐶))} where 𝜎 = [𝑇 /𝑋 ].

Proof. We follow the same reasoning as in Lemma 4.3.10 but with occurences of {this ⇒ ⟦𝐶⟧}
replaced by {this ⇒ ⟦vparams(𝐶)⟧, baseArgs(𝐶)}. By inversion of ⊢ 𝐶 ok via DT-Class only
𝑋 may be free in the type and value parameters of 𝐶 which allows us to perform the following
renaming:

{this ⇒ ⟦vparams(𝐶)⟧, baseArgs(𝐶)} = {𝑧 ⇒ 𝜏 (⟦vparams(𝐶)⟧
⋀︂

baseArgs(𝐶))}

where 𝜏 = [𝑧.𝑋/|𝑋 |]. ■

Lemma 7.6.2

Given tparams(𝐶) = 𝑋 <: 𝑁 , then Γ ⊢ 𝑥 : 𝐶 [𝑇 ] implies |Γ | [𝑥 ] ⊢ 𝑥 :(!) 𝜃⟦𝐶⟧ where
𝜃 = [𝑥/this].

Proof. We can distinguish two cases.
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Figure 7.12: Translating DS types, expressions and definitions to DOT

All definitions from Figure 6.8 are carried over.

Type Translation |𝑇 | ≔ 𝑇
DOT

|𝑥 .𝐿 | ≔ 𝑥 .𝐿

Expression Translation |𝑒 |Γ ≔ 𝑡
DOT

|{val𝑥 = 𝑒1; 𝑒2}|Γ ≔ let 𝑥 = |𝑒1 |Γ in |𝑒2 |Γ

Method Translation ⦇𝑚 ⦈𝐶 ≔ 𝑑
DOT

class𝐶 [𝑋 <: 𝑁 ] ... Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ]
mtype( this.𝑚, 𝐶 [𝑋 ]) = [𝑌 <: 𝑃] → (𝑥 : 𝑈 ) → 𝑈0

mbody(𝑚, 𝐶 [𝑋 ]) = 𝑒0
⦇𝑚 ⦈𝐶 ≔ 𝑚(mtag : |𝑌 <: 𝑃 |, 𝑥 : |𝑈 |) : |𝑈0 | = |𝑒0 |Γ,𝑌<:𝑃,𝑥 :𝑈

Type Declaration Translation ⦇𝑇𝐷 ⦈ ≔ 𝑑
DOT

tparams(𝐶) = 𝑋 <: 𝑁
ttype(this.𝐴, 𝐶 [𝑋 ]) = 𝑆 .. 𝑇

⦇𝐴 ⦈ ≔ (𝐴 = |𝑇 |)
⟦𝐴⟧ ≔ (𝐴 : |𝑆 | .. |𝑇 |)

Class Translation ⦇𝐶 ⦈ ≔ 𝑑
DOT

class𝐶 [𝑋 <: 𝑁 ] ... baseArgs(𝐶) =
⋀︂
𝑍 = 𝑆

⦇𝐶 ⦈ ≔ ⦇ vparams(𝐶 [𝑋 ]) ⦈, ⦇ mnames(𝐶) ⦈𝐶 , 𝑍 = |𝑆 | , ⦇ tnames(𝐶) ⦈𝐶
⦇𝐶 ⦈𝑇 ≔ ⦇𝐶 ⦈, 𝑋 = 𝑇

trait𝐶 [𝑋 <: 𝑁 ] ... {type𝐿 >: 𝑆 <: 𝑇 ; ...}

⟦𝐶⟧ ≔ ⟦mnames(𝐶)⟧𝐶 ∧ baseArgs(𝐶) ∧
⋀︂

(𝐴 : |𝑆 | .. |𝑇 |)
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Case 𝑥 = this

In this case, |Γ | (𝑥) = ⟦𝐶⟧ |𝑋 | and 𝜃⟦𝐶⟧ = ⟦𝐶⟧, hence

(Var)
|Γ | [𝑥 ] ⊢ this :(!) ⟦𝐶⟧ |𝑋 |

(Sub, And11)
|Γ | [𝑥 ] ⊢ this :(!) ⟦𝐶⟧

Case 𝑥 ≠ this

In this case, |Γ | (𝑥) = |𝐶 [𝑇 ] | and it is easy to see that |Γ | [𝑥 ] ⊢ |𝐶 [𝑇 ] | <: {this ⇒ ⟦𝐶⟧}, hence

(Var)
|Γ | [𝑥 ] ⊢ 𝑥 :(!) |𝐶 [𝑇 ] |

(Sub)
|Γ | [𝑥 ] ⊢ 𝑥 :(!) {𝑥 ⇒ 𝜃⟦𝐶⟧}

(VarUnpack)
|Γ | [𝑥 ] ⊢ 𝑥 :(!) 𝜃⟦𝐶⟧

■

Theorem 7.6.3: Translation preserves substitution

|𝜎𝑆 | = |𝜎 | |𝑆 |

Proof. By structural induction on 𝑆 as in Theorem 4.3.7.

Case 𝑆 = 𝑥 .𝐿

By definition, 𝜎 = [𝑇 /𝑋 ] and |𝜎 | = [|𝑇 |/|𝑋 |] for some 𝑇, 𝑋 . Therefore, |𝜎 (𝑥 .𝐿) | = |𝑥 .𝐿 | since
𝑥 .𝐿 ∉ dom(𝜎) and |𝜎 | |𝑥 .𝐿 | = |𝑥 .𝐿 | since |𝑥 .𝐿 | = 𝑥 .𝐿 ∉ dom( |𝜎 |).

■

Lemma 7.6.4

Given Γ ⊩Δ, Γ ⊢ 𝜎 (𝜃𝑆) wf and (𝑋 <: 𝑁,this :𝐶 [𝑋 ]) ⊢ 𝑆 pwf, then if either Γ ⊢ 𝑥 :𝐶 [𝑇 ] or
Δ ⊢[𝑥 ] 𝑥 :! |𝐶 [𝑇 ] |, we must have Δ ⊢ 𝜃 |𝑆 | =:= |𝜎 (𝜃𝑆) | where 𝜃 = [𝑥/this] and 𝜎 = [𝑇 /𝑋 ].

Proof. By structural induction on 𝑆 . Cases 𝑆 = 𝑇1 &𝑇2 and 𝑆 = 𝑇1 | 𝑇2 easily follow by the IH.

Case 𝑆 = 𝑍

By inversion of (𝑋 <: 𝑁, this : 𝐶 [𝑋 ]) ⊢ 𝑍 pwf, we must have𝑍 = 𝑋𝑖 ∈ 𝑋 . We find 𝜃 |𝑋𝑖 | = 𝑥 .𝑋𝑖

and |𝜎 (𝜃𝑋𝑖) | = |𝜎𝑋𝑖 | = |𝑇𝑖 |.

Subcase 𝑥 = this

We must have 𝐶 [𝑇 ] = 𝐶 [𝑋 ] and 𝜃 |𝑆 | = |𝑆 | = |𝜎 (𝜃𝑆) | which finishes the subcase.
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Subcase 𝑥 ≠ this

Either Γ ⊢ 𝑥 : 𝐶 [𝑇 ] which implies Δ ⊢[𝑥 ] 𝑥 :! |𝐶 [𝑇 ] | or we already have Δ ⊢[𝑥 ] 𝑥 :! |𝐶 [𝑇 ] |.
Hence,

Δ ⊢ 𝑥 :! |𝐶 [𝑇 ] |
(Sub)

Δ ⊢ 𝑥 :! (𝑋𝑖 = 𝑇𝑖)
(Sel1, Sel2)

Δ ⊢ 𝑥 .𝑋𝑖 =:= |𝑇𝑖 |

Case 𝑆 = 𝐶 [𝑇 ]

By definition,
|𝜎 (𝜃𝐶 [𝑇 ]) | = | (𝐶 [𝜎 (𝜃𝑇 )]) | = ct.𝐶 ∧

⋀︂
𝑋 = |𝜎 (𝜃𝑇 ) |

𝜃 |𝐶 [𝑇 ] | = ct.𝐶 ∧
⋀︂
𝑋 = 𝜃 |𝑇 |

By the IH, Δ ⊢ |𝜎 (𝜃𝑇 ) | =:= 𝜃 |𝑇 | and finishing the case is easy.

Case 𝑆 = this.𝐿

We have 𝜃 |𝑆 | = 𝑥 .𝐿 and |𝜎 (𝜃𝑆) | = |𝑥 .𝐿 | = 𝑥 .𝐿 so GS-Refl finishes the case.

Case 𝑆 = 𝑦.𝐿 where 𝑦 ≠ this

We have 𝜃 |𝑆 | = |𝑆 | = 𝑦.𝐿 and |𝜎 (𝜃𝑆) | = |𝑦.𝐿 | = 𝑦.𝐿 so GS-Refl finishes the case once again.
■

Lemma 7.6.5: Context truncation preserves environment entailment

If Γ ⊩Δ and 𝑥 ∈ dom(Γ), then Γ[𝑥 ] ⊩Δ[𝑥 ]

Proof. By induction on Γ ⊩Δ. Case EE-Empty is trivial.

Case

Γ′ ⊩Δ

Δ ⊢ |𝑋 | <: |𝑁 |
(EE-Typs)

Γ′, 𝑋 <: 𝑁 ⊩Δ

(Γ′, 𝑋 <: 𝑁 )[𝑥 ] = Γ′[𝑥 ] and the IH finishes the case.
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Case

tparams(𝐶) = 𝑋 <: 𝑁
𝑋 <: 𝑁 ⊩Δ′

, this : 𝑇
Δ′
, this : 𝑇 ⊢ this :! ⟦𝐶⟧ ∧ 𝑋 : ⊥ .. |𝑁 |

(EE-This)
𝑋 <: 𝑁, this : 𝐶 [𝑋 ] ⊩Δ′

, this : 𝑇, Δ′′

If 𝑥 = this then Γ[𝑥 ] = Γ and Δ[𝑥 ] = Δ′
, 𝑡ℎ𝑖𝑠 : 𝑇 so EE-This finishes the case. Otherwise

𝑥 ∉ dom(Γ) and the case is trivially true.

Case
Γ′ ⊩Δ′

𝑦 ≠ this
(EE-Var)

Γ′, 𝑦 : 𝑇 ⊩Δ′
, 𝑦 : |𝑇 |, Δ′′

If 𝑥 = 𝑦 then Γ[𝑥 ] = Γ and Δ[𝑥 ] = Δ′
, 𝑥 : |𝑇 | so EE-Var finishes the case. Otherwise Γ[𝑥 ] = Γ′[𝑥 ]

and Δ[𝑥 ] = Δ′
[𝑥 ] so the IH finishes the case.

■

Theorem 7.6.6: Partial well-formedness preservation

If Γ pwf and Γ ⊩Δ, then Γ ⊢ 𝑆 pwf implies Δ ⊢ |𝑆 | wf.

Proof. By induction on the derivation of fv(𝑆). We only show the additional case compared to
Theorem 6.5.1.

Case fv(𝑥 .𝐿) := {𝑥}

|𝑥 .𝐿 | = 𝑥 .𝐿 and since Γ ⊩Δ, we have 𝑥 ∈ dom(Δ) so Δ ⊢ 𝑥 .𝐿 wf.
■

Theorem 7.6.7: Subtyping preservation

If Γ pwf and Γ ⊩Δ, then Γ ⊢ 𝑆 <: 𝑇 implies Δ ⊢ |𝑆 | <: |𝑇 |.

Proof. By induction on the derivation of Γ ⊢ 𝑆 <: 𝑇 like in Theorem 6.5.2. We only show
the additional cases DS-SelThis1 and DS-SelOther1 since DS-SelThis2 and DS-SelOther2 are
similar.

Case
Γ ⊢ this : 𝐶 [𝑋 ] ttype(this.𝐿, 𝐶 [𝑋 ]) = 𝑆1 .. 𝑆2

(DS-SelThis1)
Γ ⊢ this.𝐿 <: 𝑆2

By inversion of EE-This, Δ[this] ⊢ ⟦𝐶⟧ |𝑋 | where ⟦𝐶⟧ = (... ∧ ⟦𝐿⟧𝐶 ∧ ...) and ⟦𝐿⟧𝐶 = (𝐿 :
|𝑆1 | .. |𝑆2 |) by definition. Hence,
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(Var)
Δ[this] ⊢ this :! ⟦𝐶⟧ |𝑋 |

(Sub, 2.4.5)
Δ[this] ⊢ this :! (𝐿 : |𝑆1 | .. |𝑆2 |)

(Trans, Typ)
Δ[this] ⊢ this :! (𝐿 : ⊥ .. |𝑆2 |)

(Sel1)
Δ ⊢ this.𝐿 <: |𝑆2 |

Case

Γ ⊢ 𝑥 : 𝑇 Γ[𝑥 ] ⊢ 𝑇 <: 𝐶 [𝑈 ] 𝑥 ≠ this
(type𝐿 >: 𝑆1 <: 𝑆2) ∈ tdecls(𝐶) 𝜎 = [𝑈 /𝑋 ] 𝜃 = [𝑥/this]

(DS-SelOther1)
Γ ⊢ 𝑥 .𝐿 <: 𝜎 (𝜃𝑆2)

By inversion of EE-Var, Δ(𝑥) = |𝑇 |. Hence,

(Var)
Δ[𝑥 ] :! |𝑇 |

(IH)
Δ[𝑥 ] ⊢ |𝑇 | <: |𝐶 [𝑈 ] |

(Sub)
Δ[𝑥 ] :! |𝐶 [𝑈 ] |

(Sub)
Δ[𝑥 ] :! {𝑥 ⇒ 𝜃⟦𝐶⟧}

(VarUnpack)
Δ[𝑥 ] ⊢ 𝑥 :(!) 𝜃⟦𝐶⟧ ⟦𝐶⟧ = ... ∧ (𝐿 : |𝑆1 | .. |𝑆2 |) ∧ ...

(Sub, 2.4.5)
Δ[𝑥 ] ⊢ 𝑥 :(!) (𝐿 : 𝜃 |𝑆1 | .. 𝜃 |𝑆2 |)

(Sub, 7.6.4)
Δ[𝑥 ] ⊢ 𝑥 :(!) (𝐿 : |𝜎 (𝜃𝑆1) | .. |𝜎 (𝜃𝑆2) |)

(Sel1)
Δ ⊢ 𝑥 .𝐿 :<: |𝜎 (𝜃𝑆2) |

] ■

Lemma 7.6.8: Class translation preserves methods

Given Δ wf, Δ[ct] ⊢ ct :! ⟦𝐶𝑇⟧, Δ ⊢ ⟦𝐶𝑇⟧, Γ ⊢ 𝑥0 : 𝑇 and Δ ⊢ 𝑦 : |𝜎𝑈 |, |𝑉 | <: |𝜎𝑃 | where
𝜎 = [𝑉 /𝑌 ] then mtype(𝑥0.𝑚, 𝑇 ) = [𝑌 <: 𝑃] → (𝑦 : 𝑈 ) → 𝑈0 implies Δ, 𝑥mtag : {_ ⇒
𝑌 = |𝑉 |} ⊢ 𝑥0.𝑚(𝑥mtag, 𝑦) : |𝜎𝑈0 |.

Proof. By induction on the derivation of mtype(𝑚, 𝑇 ). Cases DM-Super,DM-AndLR,DM-AndL

and DM-AndR are respectively similar to cases PM-Super, PM-AndLR, PM-AndL and PM-AndR

of Lemma 5.5.8.

118



7.6 Translation

Case

𝜃 = [𝑥/this] 𝜏 = [𝑇 /𝑋 ]
(def𝑚[𝑌 <: 𝑃 ′] (𝑥 : 𝑈 ′) : 𝑈 ′

0 = 𝑒0
⁓⁓⁓

) ∈ mdecls(𝐶)
(DM-Impl)

mtype(𝑥 .𝑚, 𝐶 [𝑇 ]) ≔ [𝑌 <: 𝜏 (𝜃𝑃 ′)] → (𝑦 : 𝜏 (𝜃𝑈 ′)) → 𝜏 (𝜃𝑈 ′
0)

Γ ⊢ 𝑥0 : 𝐶 [𝑇 ]
(7.6.2)

Δ ⊢ 𝑥0 : 𝜃⟦𝐶⟧ ⟦𝐶⟧ = ... ∧ ⟦𝑚⟧𝐶 ∧ ...
(Sub, 2.4.5)

Δ ⊢ 𝑥0 : (𝑚(mtag : 𝜃 |𝑌 <: 𝑃 ′ |, 𝑦 : 𝜃 |𝑈 |) : 𝜃 |𝑈0 |)
(Sub, 7.6.4)

Δ ⊢ 𝑥0 : (𝑚(mtag : |𝑌 <: 𝜏 (𝜃𝑃 ′) |, 𝑦 : |𝜏 (𝜃𝑈 ) |) : |𝜏 (𝜃𝑈0) |)

By a similar argument than in case GT-Invk of Theorem 4.3.18 we find

Δ ⊢ 𝑥0.𝑚(𝑥mtag, 𝑦) : |𝜏 (𝜃𝑈0) |

No special handling is required for dependent parameters since TApp’ is already generic
enough to handle them.

■

Lemma 7.6.9: Type member translation preserves overriding relationship

Given tparams(𝐶) = 𝑋𝐶 <: 𝑁𝐶 , 𝐵 [𝑈 ] ∈ parents(𝐶 [𝑋𝐶 ]), tparams(𝐵) = 𝑋𝐵 <: ..., Γ =

(𝑋𝐶 <: 𝑁𝐶 , this : 𝐶 [𝑋𝐶 ]) and Γ ⊩Δ, then 𝐿 ∈ tnames(𝐵) implies Δ ⊢ ⟦𝐿⟧𝐶 <: ⟦𝐿⟧𝐵 .

Proof. Let

ttype(this.𝐿, 𝐵 [𝑋𝐵]) = 𝑇1 .. 𝑇2
ttype(this.𝐿, 𝐶 [𝑋𝐶 ]) = 𝑆1 .. 𝑆2

then ttype(this.𝐿, 𝐵 [𝑈 ]) = 𝜎𝑇1 .. 𝜎𝑇2 by observation and we have

Δ ⊢ |𝑇1 | <: |𝜎𝑆1 |, |𝜎𝑆2 | <: |𝑇1 |
(7.6.3)

Δ ⊢ |𝑇1 | <: |𝜎 | |𝑆1 |, |𝜎 | |𝑆2 | <: |𝑇1 |
(4.3.8)

Δ ⊢ 𝑈 =:= 𝑋𝐵
(Trans, 2.4.6)

Δ ⊢ |𝑇1 | <: |𝑆1 |, |𝑆2 | <: |𝑇1 |
(Typ)

Δ ⊢ (𝐿 : |𝑆1 | .. |𝑆2 |) <: (𝐿 : |𝑇1 | .. |𝑇2 |)

Hence, we only need to prove that Δ ⊢ |𝑇1 | <: |𝜎𝑆1 |, |𝜎𝑆2 | <: |𝑇1 |. We proceed by inversion of
ttype(this.𝐿, 𝐶 [𝑋𝐶 ]).

Case
(type𝐿 >: 𝑆1<: 𝑆2) ∈ tdecls(𝐶)

(TT-Member)
ttype(this.𝐿, 𝐶 [𝑋𝐶 ]) ≔ 𝑆1 .. 𝑆2

By inversion of ⊢ 𝐶 ok via either DT-Class or DT-Trait we must have
overrideΓ (𝐿, 𝐶 [𝑋𝐶 ], 𝐵 [𝑈 ]) and therefore Γ ⊢ 𝜎𝑇1 <: 𝑆1, 𝑆2 <: 𝜎𝑇2. Theorem 7.6.7
finishes the case.
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Case
parents(𝐶 [𝑋𝐶 ]) = 𝑃 (type𝐿 ...) ∉ tdecls(𝑁 )

(TT-Super)
ttype(this.𝐿, 𝐶 [𝑋𝐶 ]) ≔ ttype(this.𝐿, & 𝑃)

By inversion of ttype(this.𝐿, & 𝑃) via one of TT-AndLR, TT-AndL and TT-AndR we must
have

ttype(this.𝐿, & 𝑃) =
(︂
| 𝑆 ′1

)︂
..

(︂
& 𝑆

′
2

)︂
where 𝜎𝑇1 ∈ 𝑆1 and 𝜎𝑇2 ∈ 𝑆2

By LS-Or21 and LS-Or22, Δ ⊢ |𝜎𝑇1 | <:
⋁︂

|𝑆1 | and by PS-And11 and PS-And12,
⋀︂

|𝑆2 | <: |𝜎𝑇2 |.
■

Theorem 7.6.10: Typing translation is type-preserving

If Γ ⊩Δ and Γ ⊢ 𝑒 : 𝑇 , then Δ ⊢ |𝑒 |Γ : |𝑇 |.

Proof. By induction on the derivation of Γ ⊢ 𝑒 : 𝑇 as in Theorem 6.5.3. Case DT-Invk proceeds
like case GT-Invk of Theorem 5.5.9.

Case
Γ ⊢ 𝑒1 : 𝑆 Γ, 𝑥 : 𝑆 ⊢ 𝑒2 : 𝑇 Γ, 𝑥 : 𝑆 ⊢ 𝑇 ⇑𝑥 𝑇 ′

(DT-Block)
Γ ⊢ {{val𝑥 = 𝑒1; 𝑒2}} : 𝑇 ′

We have |{val𝑥 = 𝑒1; 𝑒2}|Γ = (let 𝑥 = |𝑒1 |Γ in |𝑒2 |Γ).

(IH)
Δ ⊢ |𝑒1 |Γ : |𝑆 |

(IH)
Δ, 𝑥 : |𝑆 | ⊢ |𝑒2 |Γ : |𝑇 |

(7.6.7)
Δ, 𝑥 : |𝑆 | ⊢ |𝑇 | <: |𝑇 ′ |

(Sub)
Δ, 𝑥 : |𝑆 | ⊢ |𝑒2 |Γ : |𝑇 ′ |

(Let, 7.5.7)
Δ ⊢ let 𝑥 = |𝑒1 |Γ in |𝑒2 |Γ : |𝑇 ′ |

■

Theorem 7.6.11: Program translation is type-preserving

If ∅ ⊢
DS
𝑇 wf and ∅ ⊢

DS
𝑒 : 𝑇 then ∅ ⊢

DOT
let ct = {ct ⇒ ⦇𝐶𝑇 ⦈} in |𝑒 |∅ : |𝑇 |.

Proof. As in Theorem 6.5.5 but using Theorem 7.6.10. ■
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8 Conclusion

In this thesis, we rigorously bridged the gap between Scala and DOT for the first time via
type-preserving compilation. This involved specifying a significant subset of Scala, as well as
extending DOT itself with new rules and a generalized type safety theorem.

8.1 Future work
8.1.1 Extending DOT
This work served as a real-world benchmark for the two main flavors of DOT: wfDOT [Amin,
Grütter, et al. 2016] and oopslaDOT [Rompf and Amin 2016]. We demonstrated that the
limitations imposed by wfDOT are not mere inconvenience but real showstoppers for modeling
Scala. We therefore believe that existing extensions of wfDOT such as pDOT [Rapoport and
Lhoták 2019] should be “rebased” on oopslaDOT, although we have not investigated how much
effort this would require.

8.1.2 Specifying Scala
The road ahead is clear: the Scala language has a large surface which still needs to be formalized.
We believe that the meta-theoretical techniques we developed in this thesis should let us encode
many more Scala features. Below, we present a non-exhaustive list of such features.

Inner classes

FJI [Igarashi and Pierce 2002] extends Featherweight Java with inner classes: classes defined
inside other classes. The paper defines both operational semantics for FJI and a translation from
FJI into FJ whose semantics are proven to be equivalent to the operational definition.

While one could implement a translation from FJI into DOT by composing the existing FJI-into-
FJ and FJ-into-DOT translations, it would be more interesting to define a simpler translation
from FJI into pDOT that does not involve flattening the class hierarchy. To reuse our type-
preserving compilation proofs, this would require a version of pDOT built on top of oopslaDOT
as mentioned in subsection 8.1.1.
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It seems that no attempt has been made so far to combine FJI with FGJ. Once this work is done,
combining FJI with Dependent Scala should be straightforward.

Local classes

Local classes are classes defined in a local block, usually in a method. They can capture variables
from their environment and therefore can be used to implement closures. Despite being a long-
standing feature of Java [Gosling et al. 2015, § 14.3], there are no “FJ with local classes” calculus
in the literature. However, FJ&𝜆 [Bettini et al. 2018] does extend FJ with Java 8 lambdas [Gosling
et al. 2015, § 15.27] which can express an important subset of the semantics of local classes.

Properly supporting local classes in our source calculus would require some amount of rethink-
ing since our formalization relies heavily on the presence of a single global class table known
ahead of time. As an intermediate step, one could instead just support lambdas as in FJ&𝜆.

Unlike inner classes, local classes are not reachable via a path, and therefore should be translat-
able into oopslaDOT without having to combine it with pDOT first.

Definition-site variance

Scala lets us write variance annotations on class type parameters, for example given
trait List[+X], then Γ ⊢ 𝑆 <: 𝑇 implies Γ ⊢ List[𝑆] <: List[𝑇 ].

It should be easy to extend Dependent Scala to support such annotations by taking inspiration
from existing FJ-like calculi with definition-site variances [Emir et al. 2006; Kennedy and Pierce
2007].

A possible DOT representation is sketched out in [Rompf and Amin 2016, §§ 5.2, 7]. In our case,
for subtyping preservation to hold, we would translate List[𝑇 ] to ct.List∧{_ ⇒ X <: |𝑇 |}. Sim-
ilarly, baseArgs must take variance into account, but the interaction of inheritance and variance
in Scala is somewhat complex and still under active discussion (see https://github.com/lam-
pepfl/dotty/issues/11834).

Use-site variance (also known as “wildcards”)

Java wildcards are a long-running topic of studies due to their complex interactions with other
type system features [Cameron, Drossopoulou, and Ernst 2008; Igarashi and Viroli 2006; Daniel
Smith and Cartwright 2008; Tate, Leung, and Lerner 2011]. Supporting them is important for
expressiveness since they would let us return more precise types in baseArgs (Section 6.3) and
variable avoidance (subsection 7.4.1).

Note that wildcard capture is more expressive in Scala than in Java. Consider,
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class Box[T] {

def push(x: T): Unit = ???

def pop(): T = ???

}

class Test {

def pushPop(x: Box[?]): Unit =

x.push(x.pop())

}

The corresponding Java code does not typecheck, but it works in Scala 3 where the type of both
x.pop() and the argument of x.push is x.T (users cannot write this type, but internally type
parameters are handled as if they were type members). We anticipate that our formalization
could support this after allowing type selections on type parameters and adding an extra typing
rule of the form,

Γ ⊢ 𝑥 : 𝐶 [? >: 𝑆 <: 𝑇 ] tparams(𝐶) = 𝑋 <: ...

Γ ⊢ 𝑥 : 𝐶 [𝑥 .𝑋 ]
(T-Capture)

Since Dependent Scala already desugars method calls to only involve variables as receivers and
arguments, this should be enough to support all possible wildcard captures. If this works, it
would make our formalization of wildcards significantly simpler than the usual one based on
existential types [Cameron, Drossopoulou, and Ernst 2008].

The type translation of wildcards into DOT is straightforward: the type Box[? <: 𝑇] should
be translated as ct.Box ∧ {_ ⇒ X <: |𝑇 |}. For type-preservation to hold, an extra DOT rule
corresponding to T-Capture is likely to be necessary:

Γ ⊢ 𝑥 : (𝐿 : 𝑆 .. 𝑇 )
Γ ⊢ 𝑥 : (𝐿 = 𝑥 .𝐿)

(Capture)

Pattern matching

Pattern matching in Scala has a large surface syntax [Odersky et al. 2021a, ch. 8; Liu et al. 2022],
but the core semantics (including GADT-like inferred local constraints) have been formalized
in cDOT [Boruch-Gruszecki et al. 2022]. Because cDOT extends pDOT which itself extends
wfDOT, extending our type-preserving translation proofs to use cDOT as a target calculus will
first require rebasing pDOT on top of oopslaDOT as mentioned in subsection 8.1.1.

Higher-kinded types

[Odersky, Martres, and Petrashko 2016] explores how to model higher-kinded types in a DOT-
like setting but concludes that a direct representation is a better approach, at least for a compiler
implementation. As a stepping stone towards a higher-kinded DOT, [Stucki and Giarrusso
2021] defines 𝐹𝜔· · , an extension of 𝐹𝜔<: with (possibly higher-kinded) type intervals, but without
type members. A sketch of 𝐹𝜔· · extended with type members is discussed in [Stucki 2017, ch. 6].
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Distributivity of intersections and unions in subtyping

As mentioned in subsection 5.5.1, we were unable to extend DOT with a rule of the form,

Γ ⊢ (𝑚(𝑥 : 𝑆) : 𝑇1) ∧ (𝑚(𝑥 : 𝑆) : 𝑇2) <: (𝑚(𝑥 : 𝑆) : 𝑇1 ∧𝑇2) (And-Fun)

This is unfortunate since Scala subtyping does rely on this rule in practice. In fact, to be faithful
to Scala we would need a more general rule of the form,

Γ ⊢ (𝑚(𝑥 : 𝑆1) : 𝑇1) ∧ (𝑚(𝑥 : 𝑆1) : 𝑇2) <: (𝑚(𝑥 : 𝑆1 ∨ 𝑆2) : 𝑇1 ∧𝑇2) (And-Fun’)

While And-Fun is standard [Barendregt, Coppo, and Dezani-Ciancaglini 1983], And-Fun’ seems
more controversial.1 It is consistent with the system presented in [Pottier 1998], but that system
only allows intersection types in negative (contravariant) positions and union types in positive
(covariant) ones.

As remarked in [Giarrusso et al. 2020, § 4.4], DOT also lacks a rule for distributivity of intersec-
tions over unions which Scala assumes:

Γ ⊢ (𝑆 ∨𝑇 ) ∧𝑈 <: (𝑆 ∧𝑈 ) ∨ (𝑇 ∧𝑈 ) (Distr-∧-∨-<:)

Type inference

Scala source code is more flexible than the calculi we’ve developed so far: type arguments
and method result types can be omitted and inferred by the typechecker. [Daniel Smith and
Cartwright 2008] specifies how constraints are accumulated given a set of subtyping rules based
on Java (augmented with first-class intersection types, union types, and wildcards with both
lower-bounds and upper-bounds), but it leaves out the actual typing procedure. While Scala
type inference is local (in particular, mutually recursive methods cannot all omit their result
types), the approach used in the Scala 3 compiler is broadly similar to [Parreaux 2020] which
describes a sound and complete global type inference algorithm for a structural type system
with unions and intersections.

8.1.3 Mechanization
In this work, we did not attempt to mechanize our type-preserving translation proofs. It is not
clear to us if this is something that could be on top of the existing oopslaDOT mechanization.
For example, the existing mechanization auto-assigns a numerical label to type declarations
based on the order they appear in a given object initialization, but we really need to be able to
distinguish the type declarations corresponding to different class type parameters. Ideally, a
mechanization would be presented much like this thesis as a series of calculi without duplicating
the same proofs every time, but proof reuse seems to still be an active area of research [Delaware,
Cook, and Batory 2011; Delaware, S. Oliveira, and Schrijvers 2013; Forster and Stark 2020].

1See https://github.com/lampepfl/dotty-feature-requests/issues/51.
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8.2 Related work
8.2.1 Type-preserving compilation
The original presentation of FGJ [Igarashi, Pierce, and Wadler 2001] already included a proof of
type-preserving translation into FJ, but compensating for type erasure requires introducing
casts in the translation, and the type safety theorem of FJ does not apply to program with
downcasts. So the translation in itself did not establish soundness.

[League, Shao, and Trifonov 2002] describes a type-preserving compilation scheme of FJ into
System 𝐹𝜔 with multiple extensions including recursive types. They include support for casts
and separate compilation as their goal is to develop a practical Java compiler.

8.2.2 Other works on DOT
For completeness sake, we mention [Amin and Rompf 2017] which recasts oopslaDOT with
big-step semantics and [Rapoport, Kabir, et al. 2017] which provides an alternative proof of
soundness for wfDOT including a full mechanization.

8.2.3 Multiple Inheritance and the Diamond Problem
What should happen when multiple matching methods from unrelated classes are inherited?
There is no standard solution here but languages usually pick one of the following approaches:

• In Java and C++ with virtual inheritance, the class definition is considered invalid and an
error is emitted.

• In C++ with non-virtual inheritance, the ambiguity resolution is delayed until the method
call site, where the user can “upcast” the receiver to manually resolve the ambiguity.
See [Wasserrab et al. 2006] for a precise treatment of inheritance in C++ including a
soundness proof (but make sure to prepare a pot of coffee first). A similar solution is
implemented on top of Featherweight Java by [Wang et al. 2018] which also lets the
implementer of a method manually specify which method they are overriding in case of
ambiguity.

• Like Scala, several languages will attempt to determine a linearization order for the parent
classes and use that to resolve the ambiguity. The C3 linearization algorithm [Barrett
et al. 1996] originally defined for Dylan is especially popular, being notably used by
Python and Raku. This form of linearization is guaranteed to be monotonic: two classes
will always appear in the same order in any given linearization. This isn’t true in Scala
when traits are involved which lets us define class hierarchies more freely at the cost of
making linearization harder to reason about.

125



Chapter 8. Conclusion

8.2.4 Intersection types
Featherweight Java was first extended with interfaces and intersection types faithful to Java
semantics in FJ&𝜆2 [Bettini et al. 2018]. In Java, intersection types are not first class types:
the operands of the intersection cannot be type variables and the intersection itself can only
appear in casts and upper-bounds of type parameters. FJP&𝜆 [Dezani-Ciancaglini, Giannini,
and Venneri 2019] generalized FJ&𝜆 to allow intersections in any position (as in Scala) and
[Dezani-Ciancaglini, Giannini, and Venneri 2020] presented a type-preserving translation FJP&𝜆,
into FJ&𝜆.

Pathless Scala can be seen as a generalization of FJP&𝜆, but we found it easier to extend FGJ
with traits and intersections rather than to extend FJP&𝜆 with polymorphism and generalize its
notion of interfaces to traits. We make use of a fragment of FJ&𝜆 stripped of intersections and
lambdas to model Java bytecode as a calculus in Appendix A.

8.2.5 Union types
[Igarashi and Nagira 2006] first extended FJ with union types as well as a case analysis expression
complete with exhaustiveness checks which resembles pattern matching with type tests in
Scala. Unlike Scala, they allow selecting a method on a union if a method with the given name
exists on each side of the union, even if it is not defined in a common base type.

[Rehman et al. 2022] develops a calculus with both unions and disjoint switches inspired by
Ceylon which requires the cases of a switch to correspond to non-overlapping type tests.
Interestingly, Scala 3’s match types construct also relies on type disjointness to define its
reduction algorithm as described in [Blanvillain et al. 2022, § 2.2].

2FJ&𝜆 doesn’t allow an abstract method to override a concrete one so it is slightly less expressive than Java.
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This chapter is adapted from [Martres 2021].

While DOT has been very useful as a reasoning tool for various aspects of the Scala type system,
it is not really suitable for answering questions such as “How do I compile this Scala program
to Java bytecode?”.1

To answer this question our main source of inspiration will be [Igarashi, Pierce, and Wadler
2001] which defines two calculi: Featherweight Java (FJ) which models single-class inheritance
and Featherweight Generic Java (FGJ) which adds type parameters to the language, and then
proceeds to define a way to compile FGJ to FJ via erasure.

Real Scala compilers erase traits to Java interfaces, but FJ does not model interfaces so cannot be
directly used as a target for our erasure. Instead our target calculus is a fragment of FJ&𝜆 [Bettini
et al. 2018] which extends FJ with interfaces. FJ&𝜆 also supports intersections and lambdas, but
because these features are not present in Java bytecode, they are not useful for our purpose and
we do not use them in our erasure mapping.

FJ&𝜆 stripped of intersections and lambdas makes for a great target calculus as it closely models
most of the important aspects of Java bytecode, although we would really need to extend it
with overloading to describe Scala’s erasure faithfully.

Our target calculus is a fragment of FJ&𝜆 [Bettini et al. 2018] which extends FJ with interfaces.
FJ&𝜆 also supports intersections and lambdas, but because these features are not present in Java
bytecode, they are not useful for our purpose and we do not use them in our erasure mapping.
We name the resulting fragment Featherweight Java with Default methods (FJD).2

1The answer to this question matters even when compiling Scala to a different backend such as JavaScript,
because alternative backends strive to preserve the semantics of the JVM to ease cross-compilation [Doeraene 2018,
§ 2.1].

2FJI was already taken by Featherweight Java with Inner classes [Igarashi and Pierce 2002].
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Figure A.1: FJD: Syntax

𝐵, 𝐶, 𝐷, 𝐸 Class name
𝑓 , 𝑔 Class field
𝑚 Method name

Γ ⩴ Context
∅ | Γ, 𝑥 : 𝐶

𝐿 ⩴ Class declaration
class𝐶 ◁ 𝐵 , 𝐷 {𝐸 𝑓 ; 𝐾 ; 𝑀} proper class
interface 𝐶 ◁ 𝐵 {𝐻 ; 𝑀} interface

𝐻 ⩴ Abstract method
𝐶𝑚(𝐶 𝑥)

𝑀 ⩴ Concrete method
𝐻 = 𝑒0

𝑒 ⩴ Expression
𝑥 variable
𝑒.𝑓 field access
𝑒0.𝑚(𝑒) method call
new𝐶 (𝑒) object
(𝐶)𝑒 cast

A.1 Type Erasure
Given a type environment Γ, we write |𝑇 |Γ for the type erasure of 𝑇 which is defined in FGJ as:

|𝑋 |Γ ≔ |Γ(𝑋 ) |Γ
|𝐶 [...] |Γ ≔ 𝐶

In general, we strive to have erasure preserve as much of the structure of the original program as
possible to keep the translation simple and to allow interoperability between programs written
in the source and target language. In particular, the mapping above preserves subtyping in
FGJ: if Γ ⊢ 𝑆 <:𝐹𝐺 𝐽 𝑇 then |𝑆 |Γ <:𝐹 𝐽 |𝑇 |Γ (see [Igarashi, Pierce, and Wadler 2001, Lemma A.3.5])
which reduces the amount of casts that need to be inserted when erasing expressions to a
minimum (see [Igarashi, Pierce, and Wadler 2001, Theorem 4.5.3]).

Unfortunately, no matter how we erase intersection types, we cannot preserve subtyping in
general because although 𝑇1 &𝑇2 is the greatest lower bound of 𝑇1 and 𝑇2, there might not exist
a specific type in FJD representing the greatest lower bound of |𝑇1 |Γ and |𝑇2 |Γ .3 Nevertheless,
since we’re trying to preserve as much structure as possible, it seems logical to define:

|𝑇1 &𝑇2 |Γ ≔ erasedGlb( |𝑇1 |Γ, |𝑇2 |Γ)

where erasedGlb always returns one of its arguments. In fact this is what both Java and Scala
do, but they differ on the implementation of erasedGlb:

• Java simply defines erasedGlb(𝑇1, 𝑇2) ≔ 𝑇1 [Gosling et al. 2015, § 4.6]. This means that

3Technically, subtyping would be preserved if we erased all types to Object, but this wouldn’t be practical since
it would require many more casts in expression erasure and impede interoperability between Scala and Java.
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the user can tweak the erasure by reordering types which can be useful for evolving code
in a binary-compatible way.

• Scala 2 defines erasedGlb to prefer subtypes over supertypes (thus actually returning
the greatest lower bound of the erased types) and proper classes over traits (because
both casting and method call are usually faster on classes than on interfaces [Click and
Rose 2002; Shipilëv 2020]). Unfortunately, completely specifying the behavior of Scala 2
here is extremely hard because it inadvertently depends on implementation details of the
compiler4

• Scala 3 preserves the two properties from Scala 2 mentioned above and additionally
ensures that erasure preserves commutativity of intersection (|𝑇1 &𝑇2 |Γ = |𝑇2 &𝑇1 |Γ) by
applying a tie-break based on the lexographical order of the names of the compared types.
The following pseudo-code accurately specifies its behavior5:

1 def erasedGlb(tp1: Type, tp2: Type): Type =

2 if tp1.isProperClass && !tp2.isProperClass then

3 return tp1

4 if tp2.isProperClass && !tp1.isProperClass then

5 return tp2

6 if tp1 <: tp2 then return tp1

7 if tp2 <: tp1 then return tp2

8 if tp1.name <= tp2.name then tp1 else tp2

The Scala 3 algorithm preserves most interesting properties of intersections but has one non-
obvious shortcoming: it does not preserve associativity, consider:

trait X; trait Y; trait Z extends X

Then |(X&Y)&Z| = Z but |X&(Y&Z)| = X. The problem is that while the lexicographic ordering
by itself is total, it is applied inconsistently because incomparability of subtyping is not transitive:
in our example neither X <: Y nor Y <: X making X and Y incomparable, but even though Y and
Z are also incomparable it is not true that X and Z are incomparable.

To rectify this we propose6 ordering classes by the number of base types they have. In other
words, we replace the subtyping checks on lines 6 and 7 in the listing above by:

4For the unsavory details, see https://github.com/lampepfl/dotty/blob/3.2.0/compiler/src/dotty/tools/dotc/core/
unpickleScala2/Scala2Erasure.scala.

5The complete implementation also special-cases value types and array types which we do not model in
our calculus, see erasedGlb in https://github.com/lampepfl/dotty/blob/3.2.0/compiler/src/dotty/tools/dotc/core/
TypeErasure.scala.

6Since this change would break binary compatibility, it will have to wait until the next major version of Scala.
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val relativeLength = L(tp1).length - L(tp2).length
if relativeLength > 0 then return tp1

if relativeLength < 0 then return tp2

This means that we still prefer subtypes over supertypes since a subclass necessarily has more
base types than any of its parent, but incomparability is now transitive which is enough to
make erasedGlb itself transitive.

In the rest of this section, we will assume erasedGlb prefers classes over traits as well as subtypes
over supertypes but otherwise will stay independent of any particular implementation.

A.2 Expression Erasure
Because type erasure does not preserve subtyping we might need to insert casts both on prefixes
of calls as well as on method arguments. To keep the typing rules in Figure A.2 readable, we
delegate casting |𝑒 |Γ to 𝑇 to an auxiliary judgment |𝑒 |𝑇Γ which is mutually recursive with the
main judgment:

𝑒
′
= |𝑒 |Γ

Γ ⊢𝐹 𝐽 𝐷 𝑒′ : 𝑆

|𝑒 |𝑇Γ ≔
{︄
𝑒
′ if 𝑆 <:𝐹 𝐽 𝐷 𝑇

(𝑇 )𝑒′ otherwise

Figure A.2: PS: Expression Erasure

|𝑒
PS
|Γ = 𝑒FJD

|𝑥 |Γ ≔ 𝑥 (ER-Var)

Γ ⊢ 𝑒0 : 𝑇0 |𝑇0 |Γ = 𝐶
|𝑒0.𝑓 |Γ ≔ |𝑒0 |𝐶Γ .𝑓

(ER-Field)

Γ ⊢ 𝑒0 : 𝑇0 erasedReceiverΔ (𝑚, 𝑇0) = 𝐶
mtype

FJD
(𝑚𝐶 , 𝐶) = (𝑥 : 𝐷) ⇒ 𝐷0 𝑒

′
𝑖 = |𝑒𝑖 |

𝐷𝑖

Γ

|𝑒0.𝑚[𝑉 ] (𝑒) |Γ ≔ |𝑒0 |𝐶Γ .𝑚𝐶 (𝑒′)
(ER-Invk)

|𝑁 |Γ = 𝐶 vparamsΔ ( [)FJD] (𝐶) = 𝑓 : 𝐷

𝑒
′
𝑖 = |𝑒𝑖 |

𝐷𝑖

Γ

|new𝑁 (𝑒) |Γ ≔ new𝐶 (𝑒′)
(ER-New)

Casting the prefix of a getter call to the appropriate type is easy: we know that erasedGlb
will always return the most specific class type in an intersection and that traits do not contain
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getters, therefore if vparamsΓ (𝑇0) = 𝑓 : 𝑇 then vparamsΓFJD
( |𝑇0 |Γ) = 𝑓 : |𝑇 |Γ and ER-Field is

straight-forward, but finding the right cast for the receiver of a method call is more involved.

Given x : L & R and the class table:

trait L { def l(): Object }

trait R { def r(): Object }

Then the type of |x|Γ will be either 𝐿 or 𝑅 (depending on the definition of erasedGlb), but that
means that one of x.l() and x.r() will require casting the receiver, therefore ER-Invk relies
on the following auxiliary function:

erasedReceiverΔ (𝑚, 𝑋 ) ≔ erasedReceiverΔ (𝑚, Γ(𝑋 ))
erasedReceiverΔ (𝑚, 𝐶 [...]) ≔ 𝐶

erasedReceiverΔ (𝑚, 𝑇1 &𝑇2) :=
{︄

erasedReceiverΔ (𝑚, 𝑇1) if mtype(𝑚, 𝑇1) is defined

erasedReceiverΔ (𝑚, 𝑇2) otherwise

Additionally, erasure does not preserve method names: 𝑚 is erased to𝑚𝐶 where 𝐶 is the type
of the receiver, this is justified in the following section.

A.3 Class Table Erasure
Given the class table:

trait X; class Y extends X

trait L[T] { def foo(): T }

trait R[T <: X] { def foo(): T }

class A ◁ Object, L[Y], R[Y] {

def foo(): Y = new Y

}

One might hope we could erase it just by erasing each type and expression appearing in it:

interface L { Object foo() }

interface R { X foo() }

class A ◁ Object, L, R {

Y foo() { return new Y(); }

}

But that would be incorrect: a method in FJD must have exactly the same type as the methods it
overrides (just like in Java bytecode). Compilers normally handle this by generating synthetic
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bridge methods [Bracha et al. 2003]:

interface L { Object foo() }

interface R { X foo() }

class A ◁ Object, L, R {

Y foo() { return new Y(); }

Object foo() { return <overload of foo returning Y>(); }

X foo() { return <overload of foo returning Y>(); }

}

Notice that the types of the new methods added in A match the types of the overridden methods
in L and R and simply forward to the actual implementation of foo in A, thus restoring the
semantics present in the source program. But we cannot directly reuse this technique since our
target calculus does not support overloading, faced with the same problem FGJ adopted the
following strategy:

In [Generic Java], the actual erasure is somewhat more complex, involving the
introduction of bridge methods […] instead, the rule E-Method merges two meth-
ods into one by inline-expanding the body of the actual method into the body of
the bridge method.

But this works because FGJ only supports single-class inheritance, whereas in the example
above we need two bridges in A corresponding to the two traits containing an overridden foo.
Like FGJ, we shy away from introducing overloading in our target calculus and instead employ
the following scheme:

• When erasing a call to𝑚, we replace it by a call to𝑚𝐶 where 𝐶 is the erased receiver of
𝑚 (see the previous section).

• When erasing the declaration of𝑚 in 𝐶 , we rename it to𝑚𝐶 .

• When erasing a class 𝐶 , we add enough bridge methods so that erased calls to𝑚 always
end up being forwarded to the implementer of𝑚 in 𝐶 .

For our example this means we get:

interface L { Object foo𝐿() }

interface R { X foo𝑅() }

class A ◁ Object, L, R {

Y foo𝐴 { return new Y(); }

Object foo𝐿 { return this.foo𝐴(); }

X foo𝑅 { return this.foo𝐴(); }

}
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This scheme wouldn’t be practical in a real compiler since it would make it much harder for
Java and Scala code to interoperate, but as a model we believe it’s close enough to the real thing
to be useful. The exact rules are described in Figure A.3 which makes use of the following
judgments:

mtypeFJD(𝑚𝐸, 𝐸) = (𝑥 : 𝑇 ) → 𝑇0

mtypeFJD(𝑚𝐷 , 𝐷) = (𝑥 : 𝑈 ) → 𝑈0

𝑥0 = this.𝑚𝐷 (𝑒)

𝑒𝑖 =

{︄
𝑥𝑖 if𝑇𝑖 = 𝑈𝑖

(𝑈𝑖)𝑥𝑖 otherwise

bridge(𝑚𝐸, 𝑚𝐷 ) ≔ 𝑇0𝑚𝐸 (𝑇 𝑥) {return 𝑒0; }

mimpl(𝑚, 𝑁 ) = 𝐷 [𝑇 ]
𝐸 [...] =

{︁
n ∈ L(𝑁 ) ∖ 𝐷 [𝑇 ]

|︁|︁ def𝑚 ... ∈ mdecls(n)
}︁

bridges(𝑚, 𝑁 ) ≔ bridge(𝑚𝐸, 𝑚𝐷 )

Note that this definition of bridges can generate unnecessary bridges since it does not take
into account that a parent class might already have defined an equivalent bridge.

Figure A.3: PS: Class Table Erasure

Method erasure |𝑀
PS
|𝐶 = 𝑀

FJD

class𝐶 [𝑋 <: 𝑁 ] ...
Γ = 𝑋 <: 𝑁, this : 𝐶 [𝑋 ], 𝑌 <: 𝑃, 𝑥 : 𝑇 𝐷 = |𝑇0 |Γ

|def𝑚[𝑌 <: 𝑃] (𝑥 : 𝑇 ) : 𝑇0 = 𝑒0
⁓⁓⁓

|𝐶 ≔

𝐷𝑚𝐶 ( |𝑇 |Γ 𝑥) { return |𝑒0 |𝐷Γ ; }
⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓⁓

(ER-Method)

Class erasure |𝐿
PS
| = 𝐿

FJD

Γ = 𝑋 <: 𝑁 𝐾 = 𝐶 ( |𝑈 |Γ 𝑔, |𝑇 |Γ 𝑓 ) { super(𝑔); this.𝑓 = 𝑓 ; }
𝑀

′
= |𝑀 |𝐶 ∪

{︁
bridges(𝑚, 𝐶)

|︁|︁𝑚 ∈ mnames(𝐶)
}︁

|class𝐶 [𝑋 <: 𝑁 ] (𝑔 : 𝑈 , 𝑓 : 𝑇 ) ◁ 𝑃 (𝑔) , 𝑄 {𝑀}| ≔
class𝐶 ◁ |𝑃 |Γ , |𝑄 |Γ {|𝑇 |Γ 𝑓 ; 𝐾 ; 𝑀 ′}

(ER-Class)

Γ = 𝑋 <: 𝑁 𝑀
′
= |𝑀 |𝐶

|trait 𝐶 [𝑋 <: 𝑁 ] ◁𝑄 {𝑀}| ≔ interface 𝐶 ◁ |𝑄 |Γ {𝑀 ′}
(ER-Trait)

A.4 Future work
In this work we’ve focused on erasing Scala types into “bytecode Java” types, but in practice
we also need to worry about erasing Scala types into “source Java” types: the bytecode format
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defines a Signature attribute [Lindholm et al. 2015, § 4.7.8] which lets us specify a polymorphic
Java method signature that will be ignored by the JVM at runtime but used by the Java compiler
for typechecking, thus improving the interoperability between Scala and Java. It would be useful
to specify an erasure from PS into full FJ&𝜆 as a way to model this process. The Java compiler will
also use this attribute if it is available to compute the erased signature it will emit when invoking
the method, therefore we should also define an erasure of FJ&𝜆 into FJD based on the semantics
of Java erasure and verify that the composition of these two mapping are equivalents to the
erasure mapping of PS into FJD to avoid issues such as https://github.com/scala/bug/issues/4214.
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